doi:10. 19306/j. cnki. 2095-8110. 2018. 05. 015

基于粒子群算法的石英挠性加速度计 温度补偿方法研究

于东康1,杨功流1,吴宜荣2,谢祖辉1,涂勇强1

(1. 北京航空航天大学 仪器科学与光电工程学院,北京 100191;2. 福建星海通信科技有限公司,福州 350015)

摘 要:由于使用环境的需求,需要光纤惯组具有较宽的工作温度范围,一般在-40℃~60℃温度范围内有稳定且准确的输出。而实际情况下温度变化会使惯性器件输出产生温度漂移,制约惯组的输出精度。以工程实例为依托,以光纤惯组中低精度石英挠性加速度计作为研究对象,首先分析了石英加速度计的温度特性,然后设计了一种基于粒子群算法的石英加速度计温度补偿方法,并以温补后器件的零偏特性为依据,利用试验平台对温补效果进行了试验验证。试验结果表明,该温补方法能够有效补偿石英加速度计的温度漂移,补偿后的零偏稳定性较补偿前有数量级上的提升。
 关键词:石英挠性加速度计;温度补偿;粒子群算法;PSO工具箱
 中图分类号:V241.62;TP301.6 文献标志码:A 文章编号:2095-8110(2018)05-0090-06

Research on Temperature Compensation Method of Quartz Flexible Accelerometer Based on Particle Swarm Optimization

YU Dong-kang¹, YANG Gong-liu¹, WU Yi-rong², XIE Zu-hui¹, TU Yong-qiang¹

School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China;
 Fujian Xinghai Communications Technology Co., Ltd., Fuzhou 350015, China)

Abstract: To meet the requirements of it's operating environment, fiber optic inertial navigation system should operate over a wide temperature rang and should generally provide a stable and accurate output with temperature ranging from -40 to 60 degrees Celsius. In practice, temperature change brings drift to the output of inertial devices and restricts the output precision of the IMU. Based on engineering examples, we focus on the research of the low precision quartz flexible accelerometers of fiber strapdown IMU. Firstly, the temperature characteristic of quartz flexible accelerometers is analyzed. Then, a temperature compensation model is proposed based on particle swarm optimization (PSO) for quartz accelerometer and the compensation effectiveness is verified based on the bias characteristics of the device after temperature compensation. The results shows that the temperature compensation method can effectively compensate the temperature drift of quartz flexible accelerometer, and the bias stability has been improved by about one order of magnitude.

Key words: Quartz flexible accelerometer; Temperature compensation; Particle swarm optimization; PSOt

收稿日期:2018-06-04;修订日期:2018-06-25

0 引言

光纤陀螺具备体积小、质量小、可靠性高、动态 范围大、线性度好、频带范围宽以及启动时间短等 优点,以光纤陀螺和石英挠性加速度计为核心部件 的光纤惯组,凭借其优越的性能广泛应用于航天、 航空、航海、兵器及多种军民用领域^[1]。

目前国内普遍使用的光纤陀螺、石英挠性加速 度计其零位和刻度因子受温度变化影响明显,要使 光纤惯组在全温范围内(一般为一40℃~60℃)的 输出满足精度要求,必须尽可能地消除温度变化对 器件性能的制约^[2]。目前常用的方法有两种:1)采 用温控的方法为惯性器件加温以提供良好的环境 温度条件:2)采用实时温度误差补偿技术,对惯性 器件进行实时补偿以满足其全温范围内的精度[3]。 其中温度误差补偿作为一种纯数学的方法,相较于 温控法能够避免结构的冗余,同时也能得到较高的 补偿精度,是目前采用较多的一种方法[4-7]。在对温 度误差补偿方法的研究工作中,文献[4]利用数据 拟合的方法建立了加速度计温度模型,并应用该模 型提出了相应的补偿算法;文献「5]提出了基于小 波最小二乘支持向量机的石英挠性加速度计温度 补偿方法;文献「6]则建立了基于温度和温度梯度 的联合多项式补偿模型,设计了基于传统最小二乘 拟合的补偿方法。

在本文针对的工程实例中,惯组的石英加速度 计精度较低(对应精度在 1mg 左右,属低精度加速 度计),启动后输出稳定性受温度变化影响较大,通 过传统的最小二乘补偿方法无法得到满足要求的 补偿精度,因而成为制约惯组精度的主要因素。

在经充分验证此类低精度石英挠性加速度计 静态温漂特性之后,本文提出了一种引入温度、温 度高次项及温度变化率作为变化量的温度误差模 型,并设计了基于粒子群算法的温度补偿方法。通 过搭建测试平台验证补偿效果,试验结果表明:该 方法能够有效补偿石英加速度计的温度漂移,使加 速度计输出的零偏稳定性提升1个数量级,具有良 好的工程应用价值。

1 石英挠性加速度计温度特性分析

1.1 石英挠性加速度计温度特性

石英挠性加速度计表头的结构如图 1 所示,主 要包括检测质量组件、上力矩器组件和下力矩器组 件三部分。在使用过程中,加速度计温度漂移主要 由表头结构参数变化、封装热应力和检测电路温度 漂移造成^[8]。对于石英挠性加速度计来说,表头部 分是产生温度误差的主要原因,表头温度的变化和 表头力矩器标度因数的温度系数决定着加速度计 温度误差的大小。

Fig. 1 The structure of Q-flex accelerometer

在加速度计工作过程中,2个因素会直接导致 其表头温度的变化:1)工作环境温度的变化;2)由 于力矩器线圈在通过反馈电流时自身发热造成的 表头温度变化。由自发热导致的线圈尺寸和磁场 强度变化由式(1)表示:

$$l = l_0 (1 + \beta_1 \Delta T)$$

$$B = B_0 (1 + \beta_2 \Delta T)$$
(1)

其中, l_0 和 B_0 分别为常温下(T = 20℃)力矩 器线圈的尺寸和磁场强度,l和 B分别为温度变化 ΔT 后力矩器线圈的尺寸和磁场强度, β_1 和 β_2 表示 线圈和磁钢的温度系数。

力矩器线圈自发热引起的输出误差可表示为

 $\delta = (1 + \beta_1 \Delta T_1) (1 + \beta_2 \Delta T_2) - 1$ (2)

基于上述分析,如果考虑加速度计零偏温度特 性模型是实时温度 T 与百秒温度变化 ΔT 的函数, 即可表示为

$$K_{0} = \varphi(T, \Delta T)$$
(3)
式中, K₀ 为加速度计的零偏。

1.2 石英挠性加速度计温度补偿模型

工程上使用的加速度计误差模型为

$$N = K \left(K_{0} + a + \varepsilon a' \right) \tag{4}$$

式中, K 为标度因数, a 为对应轴向的输入加速度, ε 为安装误差项, $\pi a'$ 为输入轴垂直方向上的加速度。

温度变化带来的影响主要为标度和零偏的变

化,反映在公式上,则可将式(4)表示为

 $N(T) = K(T)(K_0(T) + a + \varepsilon a')$ ⁽⁵⁾

如重点考虑对零偏的补偿,即忽略温度对标度 因数的影响,采用先温补再标定的工程方案。针对 石英挠性加速度计温漂特性,提出与温度和温度变 化率有关的温补模型

$$\Delta N = aT + bT^2 + cT^3 + d\Delta T + e\Delta T^2 \qquad (6)$$

式中, ΔN 为补偿量,亦即加速度计的零位漂 移量, a、b、c、d、e 为温补参数。式(6)给出的模型 结合了温度场的变化速率以及不同温度条件下的 数据,能够很好地反映速度计的温度漂移情况^[9]。

1.3 传统最小二乘法拟合温补系数

借助式(6)建立的温度漂移模型,通过一定方 法求取相关系数并加以补偿,可以达到温补目的。 最小二乘法就是其中一种行之有效的拟合温补参 数的方法,也是工程上使用较多的传统方法。

所谓最小二乘,即根据使偏差平方和最小的原则进行曲线拟合。如果令 $y = y_P(i) - \overline{y}$ 表示实际的温度漂移误差,其中 $y_P(i)$ 为加计输出, \overline{y} 为该轴全温段输出均值,则所需拟合的曲线形式为 $y = \Delta N(T, \Delta T) = aT + bT^2 + cT^3 + d\Delta T + e\Delta T^2$ (7)

式(7)为关于 T 和 ΔT 的二元三次多项式。根据最小二乘法的定义,就是要通过给定的数据 (T_i , ΔT_i , y_i)确定其中几个系数,使得在各个点上的偏差 δ 平方和 $\sum \delta = \sum [\sum \Delta N(T_i, \Delta T_i) - y_i]^2$ 达到最小。

利用 Matlab 提供的 regress 函数,可以实现最 小二乘拟合求参,该方法特点为使用便捷,无需复 杂的调参步骤,但同时得到的补偿精度有限,在某 些工程环境下难以满足需要。

2 粒子群算法用于温漂补偿

2.1 粒子群算法基本原理

粒子群算法(Particle Swarm Optimization, PSO)是模拟鸟群捕食行为的一种算法。该算法针 对被优化的函数,首先初始化一群随机粒子(随机 解),所有的粒子都有一个被优化函数决定的适应 度值。每个粒子还有一个速度来决定它们飞行的 方向和距离,粒子们追随当前的最优粒子在解空间 中搜索^[10]。

寻找最优解的过程通过迭代实现,每次迭代中

粒子位置的更新是靠追踪 2 个极值来完成,分别是 粒子本身找到的最优解,即个体极值,以及整个种 群当前找到的最优解,即全局极值。

粒子群算法比遗传算法规则更为简单,没有遗 传算法的交叉(Crossover)和变异(Mutation)操 作,通过追随当前搜索到的最优值来寻找全局最 优。这种算法以其实现容易、精度高、收敛快等优 点引起了学术界的重视,并且在解决实际问题中展 示了其优越性。

$$V_{i}^{kg+1} = w(t) \times V_{i}^{kg} + c_{1}r_{1}(p_{i}^{kg} - X_{i}^{kg}) + c_{2}r_{2}(\text{Best}S_{i}^{kg} - X_{i}^{kg})$$
(8)

$$X_i^{kg+1} = X_i^{kg} + V_i^{kg+1} \tag{9}$$

式(8)、式(9)为粒子群算法的核心公式,该算 法由以上两式完成速度和位置的更新,式中kg =1, 2,…,G,i =1,2,…,size, r_1 、 r_2 为0到1的随机数, c_1 为局部学习因子, c_2 为全局学习因子,p和 BestS分别表示局部最优解和全局最优解。

对参数的设置是算法中重要的一环,其中包括:1)粒子数的选取,常取 20~40,对于比较复杂的问题,也可取 100 或 200。2)最大速度 V_{max} 的设定,该值决定粒子在一个循环中最大的移动距离,通常小于粒子的范围宽度。较大的 V_{max} 可以保证粒子种群的全局搜索能力,较小的 V_{max} 则可以加强粒子种群的局部搜索能力。3)学习因子 c_1 、 c_2 一般取值 2.0,通常 c_2 取值更大些。4)惯性权重w(t):一个大的惯性权值有利于展开全局寻优,而一个小的惯性权值有利于局部寻优^[11]。

PSO 算法以流程图如图 2 所示。

2.2 粒子群算法用于温漂补偿

依据式(6)建立算法模型

$$y_p(i) = \overline{y} + aT + bT^2 + cT^3 + d\Delta T +$$

 $e\Delta T^2$, $i=1,2,\cdots,N$ (10)

式中,y为某一轴向加速度计实测数据的均 值, y_p 为算法模型的输出, $a \ b \ c \ d \ e$ 为模型中待 辨识的参数,N为测试数据的数量。

辨识误差指标取

 $J = \frac{1}{2} \sum_{i=1}^{N} (y_{p}(i) - y(i))^{2}, \quad i = 1, 2, \cdots, N$ (11)

J 取值越小,说明模型输出越接近实测数据,此 时补偿量即为

 $\Delta N = aT + bT^2 + cT^3 + d\Delta T + e\Delta T^2 \quad (12)$

利用 Matlab 中提供的粒子群算法工具箱 (PSOt)进行编程,采用上面所述方法对三轴加速度 计输出分别建立温度补偿模型。参考粒子群算法 在实际工程中的应用,针对本优化模型,待辨识参 数的取值范围设置为[-1,1],粒子数取 50,共迭代 500次,粒子最大速度以及学习因子等参数取工具 箱默认值,以此实现该算法模型^[12-14]。

3 试验验证与结果

试验平台主要包括温箱、电源、工控机、数据采 集及处理模块、上位机测试软件以及外围接口电路 等,如图3所示。试验对象为某型光纤惯组,其光纤 陀螺和石英加速度计内部均设有测温电阻,可实时 检测其内部温度并与器件输出一并发至上位机。

图 3 试验惯组及试验测试平台 Fig. 3 IMU and platform of test

3.1 参数辨识过程

由于加速度计的温度漂移受温变速率与当前 温度值的影响,为了求取加速度计在全温条件下的 温度模型,必须采样不同温度及不同温变速率下的 加速度计零位漂移^[15]。试验中分别选取温度点为 -40℃、0℃、60℃,且在变温过程中选择不同的温 变速率,建立温度变化模型如图 4 所示。采集在此 温变模型下光纤惯组三轴加速度计的输出作为样 本集,以粒子群算法辨识温补参数,并代入样本数 据进行验证。

3.2 验证过程

将温补参数加载到下位机中,并设置下位机程 序使其能够同时输出加速度计温补前和温补后参数。然后分别在温度点一40℃、-20℃、0℃、20℃、 40℃、60℃,采集加速度计输出。

具体方法是:在温箱达到设定温度后,保温 2h 使 系统达到热平衡,之后惯组上电并采集 1h 数据,以模 拟加速度计在该温度环境下的工作状态。实际上,加 速度计温度会经历由自发热导致升温并逐渐达到温 度稳定的过程。对比温补前和温补后加速度计的输 出曲线,并以 2 个状态下的零偏稳定性作为参考,验 证本文提出的温度补偿方法的实际效果。

3.3 结果分析

以 y 轴加速度计为例,分别验证其在低温 -40℃,常温 20℃以及高温 60℃下的输出及补偿后 曲线,试验中加速度计温度可通过温度传感器实时 得到,其温度变化曲线如图 5 所示。

由图 5 可以看出,加速度计的工作温度存在一 个缓变过程,温度的变化将导致输出的漂移。图 6 ~图 8 给出了补偿前后加速度计输出对比曲线,可 以发现未经补偿前在不同温度点下开机,加速度计 输出先是表现为一个较大的零偏值,之后在系统温 度上升并最终达到热平衡的过程中,加速度计输出 减小,输出曲线上升,并在系统达到热平衡之后输 出曲线方才趋于平稳。而补偿后的曲线被明显拉 平,输出维持在0 附近,可认为在系统启动至达到热 平衡的过程中输出保持稳定。

图 6 -40℃下启动 y 轴加速度计补偿前后输出曲线 Fig. 6 The output curves of accelerometer on the y axis starting up at -40℃ before and after compensation

图 7 20℃下启动 y 轴加速度计补偿前后输出曲线 Fig. 7 The output curves of accelerometer on the y axis

starting up at 20° C before and after compensation

表1所示为经粒子群算法补偿前后加速度计 零偏稳定性的计算情况,补偿前 y 轴加速度计的零 偏稳定性在0.6mg 左右,而经粒子群算法补偿之后 零偏稳定性不超过0.1mg,最优值接近0.05mg,相 较于补偿前提升了近1个数量级。同时与最小二乘 法得到的补偿结果相对比,不难发现粒子群算法结 果更优,在一定程度上能够获得更高的补偿精度。

表1 不同温度下加速度计补偿前后零偏稳定性

 Tab. 1
 Bias stability of accelerometer before and after compensation at different temperatures

	-40℃	20°C	60℃
补偿前零偏稳定性/mg	0.588769	0.536823	0.461610
最小二乘法补偿	0.136523	0.124877	0.091649
粒子群算法补偿	0.083992	0.074193	0.051601

4 结论

本文针对工程实例中对惯组石英挠性加速度 计输出稳定性(随温度变化)的需求开展研究,进行 了如下工作:

1)通过分析石英挠性加速度计的温度特性,提 出了一种与温度、温度高次项及温度变化率相关的 温度误差模型;

2)在温补参数辨识工具的选择上,使用了粒子 群算法,通过对算法的合理设计及参数的合理设置,实现了对模型参数的准确辨识;

3)搭建了试验平台对本文提出的温度补偿方 案进行验证,该补偿算法在试验中表现出良好的补 偿效果,成功将加速度计零偏稳定性提升近1个数 量级,收敛速度快,算法易于实现,可有效提升惯组 精度。

参考文献

- [1] 李宁.惯性测量装置温控温补技术及影响分析[D].长沙:国防科学技术大学,2009.
- [2] 王常虹,任顺清,陈希军.惯性仪表测试技术[J]. 导航定位与授时,2016,3(5):1-4.
- [3] 赵龙,胡少波,纪文涛.光纤惯组温度补偿模型和测试技术研究[J].导弹与航天运载技术,2016(4):39-43+55.
- [4] 陈福彬,张科备.石英挠性加速度计温度补偿算法[J].中国惯性技术学报,2016,24(1):98-102.
- [5] 于湘涛,张兰,郭琳瑞,等.基于小波最小二乘支持 向量机的加速度计温度建模和补偿[J].中国惯性技

术学报,2011,19(1):95-98.

- [6] 俞茂超,王新宇,阳洪,等.石英挠性加速度计温度 补偿方法研究[J].压电与声光,2018(2):220-222.
- [7] 毛瑞燕,高国伟,何刚,等.一种基于石英加速度计的新型温度补偿算法设计[J]. 传感器世界,2016, 22(5):7-12.
- [8] 冯丽爽,南书志,金靖.光纤陀螺温度建模及补偿技术研究[J]. 宇航学报,2006(5):939-941+1049.
- [9] 孙娜,高枫,姜见龙.光纤陀螺标度因数及零偏温度
 误差补偿研究[J].导航定位与授时,2017,4(4):
 92-96.
- [10] 陈长忆. 粒子群算法及其工程应用研究[D]. 成都: 电子科技大学, 2007.
- [11] 张选平,杜玉平,秦国强,等.一种动态改变惯性权的自适应粒子群算法[J].西安交通大学学报,2005,

39(10): 1039-1042.

- [12] 毛琪波,余震虹.改进的粒子群算法在传感器温度 补偿中的应用[J].计算机工程与应用,2016,52 (23):229-235.
- [13] Haklı H, Uğuz H. A novel particle swarm optimization algorithm with Levy flight [J]. Applied Soft Computing Journal, 2014, 23(5): 333-345.
- [14] Lubashevsky I. Equivalent continuous and discrete realizations of Lévy flights: A model of one-dimensional motion of an inertial particle[J]. Physica A: Statistical Mechanics & Its Applications, 2013, 392 (10): 2323-2346.
- [15] 白俊卿,张科,耿为盟.光纤陀螺惯导系统温度建模
 与补偿技术研究[J]. 压电与声光,2013,35(2):
 201-203.