首页 | 官方网站   微博 | 高级检索  
     

AC-DBD等离子体激励对L形截面钝体风荷载减阻的实验研究
引用本文:兰子奇,史志伟,孙琪杰,耿玺.AC-DBD等离子体激励对L形截面钝体风荷载减阻的实验研究[J].实验流体力学,2021,35(2):83-91.
作者姓名:兰子奇  史志伟  孙琪杰  耿玺
作者单位:南京航空航天大学航空学院 非定常空气动力学与流动控制工业和信息化部重点实验室, 南京 210016
基金项目:江苏省研究生科研与实践创新计划项目SJCX19_0010江苏高校优势学科建设工程资助项目;国家自然科学基金青年科学基金11802126
摘    要:等离子体流动控制是一种应用广泛的主动流动控制技术。为进一步研究其机理、拓展其应用范围,针对L形截面钝体模型,采用3种AC-DBD(介质阻挡放电)等离子体激励器布置形式,比较了施加激励后的减阻效果,并对减阻机理进行了研究。实验在南京航空航天大学0.8 m低速直流风洞中进行(风向角0°、来流速度2~8 m/s),激励器布置形式为顺来流前缘激励、逆来流前缘激励和拐角激励。研究结果表明:不同来流速度下,等离子体激励器对L形截面钝体都有一定的减阻效果,且减阻效果随流速增大而降低;拐角激励减阻效果最佳,逆来流前缘激励次之,顺来流前缘激励最差;通过流场分析,说明了激励器布置形式变化产生了不同的扰动效果;不同的流动控制机理是影响减阻效果的关键因素。

关 键 词:等离子体流动控制    风洞实验    风荷载减阻    风压系数    粒子图像测速
收稿时间:2020-08-19

Experimental study on drag reduction of L-shaped bluff body by AC-DBD plasma actuation
Affiliation:Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract:Plasma flow control is a widely used active flow control method. In order to further expand the application scope and understand the actuation mechanism, three kinds of AC-DBD (Dielectric Barrier Discharge) plasma actuator layout forms are used to compare the drag reduction capabilities of the L-shaped model after actuation, and the drag reduction mechanism is studied. The experiment is carried out in a low-speed DC wind tunnel, with a wind direction angle of 0°, and a wind speed of 2-8 m/s. These different actuators layout forms are the plasma actuator placed close to the leading edge along the incoming flow direction, the plasma actuator placed close to the leading edge against the incoming flow direction, and the plasma actuator arranged at the corner, respectively. Research shows that plasma actuators under different wind speed conditions have a certain control effect on drag reduction of bluff bodies, and the control ability decreases with the increase of wind speed. The plasma actuator placed in the corner produces the best control effect, and the drag reduction rate can reach more than 13% at low speed. The plasma actuator placed close to the leading edge against the incoming flow direction produces a similar effect. The drag reduction rate of the plasma actuator near the leading edge along the inflow direction can only reach about 7% at most. By analyzing the flow field, it is shown that the change of layout position produces different disturbance effects. Different flow control mechan-isms are the key factors affecting the actuation effect.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《实验流体力学》浏览原始摘要信息
点击此处可从《实验流体力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号