纳米碳粉改性苯并噁嗪树脂性能研究

张世杰 张 炜 郭亚林

(西安航天复合材料研究所,西安 710025)

文 摘 为了适应苯并噁嗪树脂在高性能领域的应用,采用纳米碳粉对其进行了改性研究。结果表明,纳 米碳粉对苯并噁嗪树脂的固化有催化作用,降低了苯并噁嗪树脂的固化特征温度,在一定程度上克服了苯并噁 嗪树脂高温固化的不足;同时,纳米碳粉的加入,提高了苯并噁嗪树脂的弯曲性能与压缩性能,起到了增强增韧 树脂的效果。

关键词 苯并噁嗪树脂,纳米碳粉,改性,固化,力学性能

Polybenzoxazine Resin Modified by Nano-Carbon Powder

Zhang Shijie Zhang Wei Guo Yalin

(Xi 'an Areospace Composites Research Institute, Xi 'an 710025)

Abstract In order to adapt the polybenzoxazine resin to the application in high performance domain's, the polybenzoxazine was modified by nano-carbon powder. The results show that the nano-carbon powder has the catalytic effect on the polybenzoxazine 's curing, reduces the polybenzoxazine 's curing temperature, to a certain extent overcomes the shortage in curing of the polybenzoxazine at high temperature. At the same time, the nano-carbon powder improves the polybenzoxazine 's mechanical property and has strengthening and toughening effect.

Key words Polybenzoxazine resin, Nano-Carbon powder, Modification, Cure, Mechanical property

1 前言

苯并噁嗪树脂 (PBZ)是一类新型酚醛树脂,它不 仅保持了传统酚醛树脂较好的力学性能、电性能及耐 高温、耐烧蚀的特性,而且还改进了酚醛树脂的不足 之处,如脆性大、固化时有小分子释出等,此外它还具 有固化过程体积零收缩、较低的吸水率和介电常数等 特性,有着广泛的应用前景和研究价值^[1],但其脆性 较大和固化温度偏高也是拓展其应用的一个主要障 碍。为了适应其在高性能领域的应用,利用纳米材料 对 PBZ树脂进行改性已经成为其研究的重要方向, 改性材料主要集中于层状硅酸盐类。本文研究了纳 米碳粉 (CB)对 PBZ树脂固化及力学性能的影响。

2 实验

2.1 原材料

苯并噁嗪树脂:成都联达合成材料厂;其中间体 分子结构如下:

$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

纳米碳粉:粒径 20~30 nm,比表面积 110~130 m²/cm³,碳质量分数 98.6%,自制。丙酮:工业级。 2.2 试样制备

配制 PBZ树脂的丙酮溶液,按比例质量分数加入 CB,用玻璃棒搅拌均匀后按照既定的高速搅拌和 超声波复合分散工艺进行分散,即可制得 CB/PBZ分散体系。将制备好的分散体系置入真空干燥箱内除 掉溶剂后进行处理,再按所需质量称量后加入模具内,后在压机上热压固化,脱模后即可制得实验测试 分析所用试样。其中 PBZ树脂的热压固化制度为:

宇航材料工艺 2008年 第 6期

常温(加接触压) 90 /1 h(加压 1.5 MPa)
130 /1 h(加压至 3 MPa后一直恒压) 180 /3 h
200 /2 h 220 /2 h; CB/PBZ的热压固化制度
为:常温(加接触压) 90 /1 h(加压 1.5 MPa)
115 /1.5 h(加压 3 MPa后一直恒压) 170 /3 h
200 /2 h 220 /2 h_a

2.3 分析测试

(1)电镜分析:采用(HIACHI)H-600透射电 镜(TEM)、JSM-6700F型场发射电子显微镜(SEI) 及 S-2700型扫描电镜(SEM)分析 CB在 PBZ树脂 中分散状态和材料弯曲、压缩后的断面形貌。

(2) 非等温 DSC 分析:采用美国 TA 公司的 Q1000型热重差热分析仪分别分析 PB Z树脂及 CB / PB Z树脂的固化过程。气氛为高纯氮,对于两种固化 体系,以 2 5,5,10和 20 /min四种不同升温速率扫 描,测定其在 50~300 固化反应的反应热。

(3)凝胶时间测试:按 GB7193.6-87执行。

(4)力学性能测试:采用日本岛津 DDS—10型万能材料试验机,按照 GB1448—83测试材料的弯曲强度;按照 GB1449—83测试材料的压缩强度;采用美国 TA公司的 Q800型 DMA分析仪研究 PBZ树脂及 CB/PBZ树脂复合材料的动态力学行为,试样尺寸为 35 mm ×12.8 mm ×3.2 mm,测试频率 1 Hz,升温速率 3 /min,振幅 10 μm,测试温度范围 50~400 。
3 结果与讨论

3.1 纳米碳粉在苯并噁嗪树脂中的分散状态

将纳米粒子分散到液相介质中是为了得到粒径 小而均匀、稳定的分散体系,使其发挥纳米粒子所具 备的特有功能^[2]。将已制备的 CB / PB Z分散体系密 封静置两周后固化,采用 TEM 和 SE I观察固化产物 内部 CB 的分散状态。图 1为固化产物切片后的 TEM 照片,图 2为固化产物断面表面喷金处理后的 SE 扫描照片。通过以上两张图片可以看出,所制备的纳米分散体系经过长时间静置后,除个别地方存在大的纳米团聚体外,内部大部分 CB 以单个或几个纳米粒子的形式分布在 PB Z树脂中。

图 1 CB/PBZ的 TEM 照片 15 000 × Fig 1 TEM micrographs of CB/PBZ

图 2 CB/PBZ的 SEI照片 50 000 × Fig 2 SEImicrographs of CB/PBZ

3.2 纳米碳粉改性苯并噁嗪树脂固化特性研究

3.2.1 非等温 DSC特征固化温度的表征

DSC是在程序控温的条件下,测量输入物质与参比物质的功率差与温度关系的一种技术,它是研究热固性树脂固化过程最常用的一种方法^[3]。表1列出了 PBZ树脂和经5%(质量分数)CB改性后 PBZ树脂的非等温特征固化温度。

树脂	/ •m in ⁻¹	T_{i} /	$T_{\rm p}$ /	$T_{ m f}$ /	T/	$H/J \cdot g^{-1}$
PBZ	2.5	135	185	248	113	232. 0
CB / PB Z	2.5	119	174	238	119	184. 7
PBZ	5	148	192	260	112	238. 6
CB / PB Z	5	134	188	260	126	205. 0
PBZ	10	158	204	268	110	254. 9
CB / PB Z	10	144	194	264	120	183. 7
PBZ	20	177	217	284	102	256. 7
CB / PB Z	20	172	215	282	114	239. 0

	表 1 PBZ及 CB/PBZ不同升温速率的固化特征温度
Tah 1	Characteristic temperature of PBZ and CB/PBZ at different scanning rat

从表 1可以看出:随着升温速率的提高,两者的起 始固化温度 (*T*_i)、峰顶固化温度 (*T*_p)和终止固化温度 (*T*_f)相应提高,固化时间缩短;而在相同的升温速率 下,CB /PBZ的 *T*_i、*T*_p和 *T*_i均比纯 PBZ树脂的要低;从 固化温度范围 (*T*)和固化反应热 (*H*)来看,CB的引

入,使固化温度的范围变宽,固化反应热降低。

将不同升温速率下的 T_i 、 T_p 和 T_f 分别对升温速 率作图 (图 3),拟合出直线,然后外推可得到 =0时 的 T_i 、 T_p 及 T_f ,这些数据将成为 PBZ树脂和 CB /PBZ 树脂固化成型工艺的主要参数 (表 2)。

宇航材料工艺 2008年 第 6期

Fig 3 T - linear relationship of PBZ and CB /PBZ
 表 2 = 0时 PBZ及 CB/PBZ的特征固化温度外推值
 Tab 2 Resum ed character istic tem perature at
 = 0 of PBZ and CB/PBZ

树脂	$T_{\rm i}$ /	$T_{ m p}$ /	$T_{ m f}$ /
PBZ	133	182	247
CB / PBZ	115	172	241

由图 3、表 2可见, CB / PB Z树脂的三个特征固化 温度均低于纯树脂,特别是 T_i与 T_p的降幅较大。利 用 XPS对 CB进行表面分析,发现含有 13.9%的羟基 基团,而羟基基团对 PB Z树脂的固化有催化作用,这 将缩短 PB Z树脂固化反应的诱发期,加快固化反应 速率,降低固化温度。

3 2 2 纳米碳粉改性苯并噁嗪树脂的固化反应动力学

固化反应的动力学参数如表观活化能和反应级 数等对了解树脂的固化反应有重要作用。表观活化 能的大小决定了固化反应的难易程度,反应级数则是 反应复杂与否的宏观表征。运用 Kissinger法和 Ozawa法可以在不必了解反应机理的情况下计算出热固 性树脂的固化反应动力学参数。表 3为 PB Z树脂及 CB /PB Z树脂的固化动力学参数。其中 E_k、E_b分别为

Kissinger法和 Ozawa法求得的反应活化能, E为平均 反应活化能, n为反应级数。从表中可以看出, Ozawa 法计算所得结果要略高于 Kissiger法,但就两个固化 体系而言, CB / PBZ的反应活化能远低于 PBZ,说明 CB的引入使 PBZ树脂的开环固化更易进行;反应级 宇航材料工艺 2008年 第6期 数基本一致,说明 CB的引入并没有使 PBZ树脂固化 反应的复杂性发生改变。

表 3 PBZ及 CB/PBZ的固化动力学参数

Tab	3	Cure	dynam	ic	pa ram e ter	of	PBZ	and	CB/	PBZ	i
-----	---	------	-------	----	--------------	----	-----	-----	-----	-----	---

树脂	$E_{\rm k}$	E_0	\overline{E}	n
PBZ	110. 2	112. 2	111. 2	0. 94
CB / PB Z	86.1	89. 2	87. 7	0. 93

3.3 纳米碳粉改性苯并噁嗪树脂凝胶特性研究

固化体系的凝胶时间就是该体系在某一温度下 由黏度较低的熔融状态到体系凝胶所需的时间。凝 胶时间取决于固化体系的初始反应活性,它随温度的 变化而变化,一般而言,温度越高,固化体系的凝胶时 间越短¹⁴¹。图 4为不同 CB 含量对 PB Z树脂凝胶时 间的影响。

图 4 CB对 PBZ树脂凝胶时间的影响

Fig 4 Effects of nano-carbon powder on PBZ gelling time

由图 4可以看出,随着温度的升高,三个固化体系的凝胶时间均迅速缩短;在相同温度下,含有 CB 固化体系的凝胶时间均低于 PB Z树脂的凝胶时间,并且随着 CB 含量的增加,凝胶时间缩短的幅度也随之加大,如在 110 时,PB Z树脂的凝胶时间为 49.7 min,含 5% CB 固化体系的凝胶时间为 40.3 min,而含 10% CB 固化体系的凝胶时间缩短至 19.7 min,这说明在低温阶段 CB 表面的羟基等基团对树脂催化开环具有明显作用,随着 CB 含量的进一步增加,为该固化体系提供了更多的羟基基团,大量的羟基基团起到催化树脂开环聚合的作用,从而导致树脂凝胶时间大大缩短。随着温度的升高,三个固化体系的凝胶时间逐渐接近,说明在高温下 CB 的催化作用有所减弱。

3.4 纳米碳粉改性苯并噁嗪树脂力学性能研究

3.4.1 弯曲性能的影响

表 4给出 CB 含量对 PB Z树脂弯曲性能的影响。 由表 4可见,随着 CB 含量的增加,PB Z树脂的弯曲 性能呈增大趋势,当 CB 质量分数增加到 10%时,树 脂的弯曲强度由 64.9 MPa增大到 89.0 MPa,提升幅 度达 37.6%。这主要由于 CB 在 PB Z树脂中基本呈 纳米级的分散状态,而且纳米粒子大的比表面积增加 了与树脂基体的界面连接面积,再加上两种材料之间 的物理化学作用,导致 CB /PBZ复合材料具有很强的 界面。复合材料强度理论认为^[5],界面强弱对复合 材料弯曲性能的影响是非常明显的,通常强的界面连 接能更有效的传递应力,使复合材料的弯曲强度较 大。所以,随着 CB 含量的增大,界面增多增强,导致 材料弯曲强度显著提高。

表 4 CB含量对 PBZ树脂弯曲性能影响

Tab. 4 Effect of nano-carbon powder content on

PBZ flexural property

CB 质量分数 /%	弯曲强度 /MPa	弯曲模量 /GPa
0	64. 9	5. 63
3	68. 0	5. 81
5	74. 3	5. 86
10	89. 0	5. 99

图 5 CB改性 PBZ树脂弯曲性能的应力 — 应变曲线

Fig 5 Stress-strain curves of flexural property of CB / PBZ

PBZ; 含 3% CB / PBZ; 含 5% CB / PBZ; 含 10% CB / PBZ

由图 5可以看出不同 CB 含量的 PB Z树脂断裂模 式均呈脆性断裂的特点,但随着 CB 含量的增大,应力 - 应变曲线与坐标轴包围的面积,即材料断裂所需单 位体积的断裂能随之增大,表明树脂的韧性有一定改 善。这是因为当 CB 均匀的分散于树脂基体中后,由 于刚性无机粒子存在应力集中效应,因此当树脂受到 载荷作用时,纳米粒子与树脂之间产生微裂纹(银纹), 同时处于纳米粒子之间的树脂基体也会产生塑性变 形,这都将吸收大量能量;另外,纳米粒子的存在阻止 了裂纹的进一步扩展,因而大大提高了材料的韧性^[6]。 随着纳米粒子的增多,将易于产生更多微裂纹和终止 更多微裂纹,使材料的韧性进一步提高。

图 6为 PBZ树脂及 CB 改性 PBZ树脂的弯曲断 面的 SEM 照片。可见, PBZ树脂的弯曲断面 [图 6 (a) 请晰光滑,呈"河流 花样,属于解理断口,其特 点是裂纹一旦形成,便迅速扩展,造成灾难性破坏,为 典型的脆性断裂^[7];而 CB 改性 PBZ复合材料的弯曲 断面 [图 6(b) 粗糙,由于纳米粒子产生并终止大量 - 34 - 微裂纹,导致了大量新表面的产生,使得断裂面为凸 凹不平的鱼鳞状,呈现出一些韧性断裂的特点,而且 韧性越大,鱼鳞状的凸凹面就越粗糙。

87.1-1.1-80.0 10.000 10.000

PBZ 1 000 ×

(a)

 (b) CB /PBZ 1 000 ×
 图 6 PBZ及 CB /PBZ的弯曲断面 SEM照片
 Fig 6 SEM micrographs of flexural failure surface of PBZ and CB /PBZ

3.4.2 压缩性能的影响

图 7给出了 CB 改性 PB Z树脂的压缩强度曲线 图。由图可见, PB Z树脂的压缩强度随着 CB 含量的 增加也呈增大趋势,当 CB 质量分数为 10%时,树脂 的压缩强度由 222 MPa增大到 256 MPa,提升幅度达 15.3%。由于 PB Z树脂内部存在的大量的分子内及 分子间氢键对其压缩强度有着较大贡献,因此纯树脂 的压缩强度也是比较高的^[8]。图 8为 PB Z及 CB / PB Z压缩断面的 SEM 照片。同样可见,PB Z树脂压 缩断面 [图 8(a)]清晰光滑,裂纹大而宽,呈脆性断 裂特征;而 CB 改性 PB Z复合材料压缩断面 [图 8 (b) 粗糙,凸凹不平,呈韧性断裂特征。

(a) PBZ 1000 ×

(b) CB / PBZ 1000 ×
 图 8 PB Z及 CB / PBZ的压缩断面 SEM照片
 Fig 8 SEM micrographs of compressive failure surface of PBZ and CB / PBZ

3.5 纳米碳粉改性苯并噁嗪树脂动态力学性能研究

图 9为不同含量的 CB 改性 PB Z树脂的储能模 量 (*E*)随温度的变化曲线。可以看到随着 CB 含量 的增大,改性后 PB Z的 *E* 有了很大提升,如在 30 时,纯树脂的储能模量为 3.32 GPa,而 CB 质量分数 为 10%的改性树脂的 *E* 为 4.39 GPa。这主要归因于 CB 在树脂中的纳米级分散,由于 CB 具有粒径小、比 表面积大、表面原子数多、化学活性高、存在大量的不 饱和键和悬键等特点,导致其与树脂形成了大量的物 理和化学交联点,提高了两者之间界面的粘合强度, 使得改性后树脂的 *E* 获得提升^[9]。

Fig 9 Curves of storage modulus vs temperature of nano-carbon powder modified PBZ

图 10为不同含量的 CB 改性 PB Z树脂的损耗因子(tan)随温度的变化曲线。

PBZ 0.5 含5%CB/PBZ 含10%CB/PBZ 0.4 0.3 \$ tan 0.2 0.1 0.0 100 200 300 400 t∕℃

图 10 CB改性 PBZ树脂的损耗因子 — 温度曲线 Fig 10 Curves of tan vs temperature of nano-carbon powder modified PBZ

由图 10可见,改性前后 PBZ复合材料的 DMA 图中存在两个内耗峰,分别出现在 230 和 300 附 近。对于热固性树脂,人们一直认为热固性树脂的交 联网络结构为非晶态的无限大的均相结构。但有些 研究者研究表明、热固性树脂的交联网络结构是由高 交联密度的"致密相 和低交联密度的"疏松相 构成 两相结构^[10~11]。对于 PBZ树脂而言,由于其固化反 应为热开环自聚合,在反应程度较低时,PBZ单体分 子量小,体系黏度也较低,分子和链段的运动几乎不 受限制,分子间或分子内未反应的链段成键几率大, 可以相互反应形成高度交联的微凝胶:随着固化反应 的进行,体系黏度增大,四官能度的 PBZ部分支化 后,分子体积较大,运动受阻,形成交联密度较低或高 度支化的分子链团。固化结束后,最初形成的微凝胶 就成为整个交联网络中交联密度大、玻璃化转变温度 高的"致密相",而交联密度低或高度支化的分子链 团就成为交联网络中的"疏松相"。因此,在 DMA 图 中的对应的两个内耗峰很有可能就是"疏松相"和 "致密相 对应的玻璃化转变峰^[12]。

4 结论

(1) CB对 PBZ树脂的固化有催化作用,降低了 PBZ树脂的固化特征温度,在一定程度上克服了 PBZ 树脂高温固化的不足;对 CB改性 PBZ树脂的固化反 应动力学研究发现,改性后 PBZ树脂的的反应活化 能远低于纯树脂的反应活化能,使 PBZ树脂的开环 固化更易进行;两者反应级数基本一致,表明 CB并 没有改变 PBZ树脂固化反应的复杂性。

(2)当 CB 质量分数为 10%时,改性后 PB Z树脂 的弯曲强度提高 37.6%达到 89.0 MPa,压缩强度提 高 15.3%达到 256.0 MPa;动态力学研究发现,随着 CB 含量的增加,树脂的储能模量有了较大幅度的提 高;在其 DMA 图谱中还发现有两个内耗峰,经分析 分别为疏松相与致密相的玻璃化转变。

(下转第 40页)

宇航材料工艺 2008年 第6期

从图 4可得出,镁酚醛树脂固化样在 200~ 300 热失重速率有明显变化,镁酚醛树脂能够快速 固化,但是同时固化速率过快可能导致的是固化的不 够均匀、不够充分,因此在进行 TGA 升温时树脂会发 生了进一步固化反应并放出小分子,在 DTG曲线上 显示为 100~330 的较为平缓的峰;整个热失重曲 线显示在 430~450 热失重速率出现热失重峰值 (a 图),主要由于在此温度区间树脂开始大量的热解所 致。在经过 150 固化 30 min后的试样的残碳率要 高于其他温度下固化相同时间试样高达 58.57%,主 要原因是固化温度太低,固化时间不够,则固化不够 充分;固化温度太高,则固化速率太快,固化不够充分 均匀,一些小分子可能没有及时排出,导致残碳率偏 低,因此可看出固化温度对于树脂耐热性能有很大影 响,镁酚醛树脂的最佳固化成型温度可确定在 150~ 160 。

3 结论

(1)酚醛树脂的 DSC热分析表明溶剂对于 DSC 酚醛树脂放热曲线测定的有极大的影响,测试前应尽 量除掉溶剂。

(2)镁酚醛树脂的 E为 82 42 kJ/mol,反应级数 是 0 913,表观活化能较低,固化反应容易进行。

(3)在有关酚醛树脂固化的研究报道中,酚环间 位一般不会参与固化反应,但是镁酚醛树脂的 FTR 研究表明羟甲基取代单体或者低聚物的酚环中的间 位氢也可能在固化反应中和羟甲基发生反应,其具体 固化机理还有待进一步研究。

(4)镁酚醛树脂在 200~300 的失重速率转折 主要是由于树脂固化过快导致固化不充分、不均匀, 而在进行 TGA 测试升温时会进行进一步固化放出小 分子所致;固化试样在 430~450 开始大量热解,热 失重速率达到最大,其中 150 固化 30 min的固化样 800 的残碳率为 58 57%。

(5)综合 DSC和 TGA 研究表明:镁酚醛树脂可以快速固化成型,且具有优异的耐热性能,其最佳的固化成型温度可控制在 150~160 。

参考文献

1 黄发荣,焦杨声.酚醛树脂及其应用.北京:北京化学 工业出版社,2003

2 Kissinger H E Themal methods of analysis Anal Chem. , 1957; 29: 1 702 ~ 1 704 h

3 朱超. 钡酚醛树脂的固化行为研究. 石化技术与应用, 2007; 25(2): 124~126

4 柳洪超,吴立军.硼酚醛树脂固化过程的红外表征.工 程塑料应用,2007;35(7):51~57

5 冀克俭,张银生. 酚醛树脂固化的红外光谱分析. 分析 测试学报, 1993; 12(2): 45~48

6 Alonsoa M V, Oliet M. Determination of curing kinetic parameters oflignin-phenol-formaldehyde resol resins by several dynamic differential scanning calorimetry methods Thermochimica Acta, 2004; 419: 161 ~ 167

7 郭昕昕,刘永琪.拉挤用酚醛树脂固化过程的研究.纤 维复材料,1999;39(4):60~64

8 A starloa-A ierbe G Kinetics of phenolic resol resin formation by HPLC Polymer, 1998; 39 (14): 3 147 ~ 3 153

9 Zhao Lei, Hu Xiao A variable reaction order model for prediction of curing kinetics of the mosetting polymers J. Polymer 2007; $67(7): 6\ 125 \sim 6\ 133$

(编辑 吴坚)

(上接第 35页)

参考文献

1 Shyan Bob Shen, Hastuo Ishida Development and characterization of high-performance polybenzoxazine composites Polymer Composites, 1996; $17(5):710 \sim 719$

2 马运柱,范景莲,黄伯云等.超细/纳米颗粒在水介质 中的分散行为.矿冶工程,2003;23(5):43~46

3 于伯龄,姜胶东.实用热分析.北京:纺织工业出版社, 1990

4 王德中. 环氧树脂生产与应用. 北京:化学工业出版 社,2001:10~11

5 郝元恺,肖加余.高性能复合材料学.北京:化学工业 出版社,2004:93~94

6 王国全,王秀芬.高性能复合材料学.北京:中国轻工 业出版社,2004:85~86

7 常铁军,祁欣.材料近代分析测试方法.哈尔滨:哈尔 滨工业大学出版社,2003:115~116 8 Ning X Ishida H. Phenolic materials via ring-opening polymerization of benzoxazines: effect of molecular structure on mechanical and dynamic mechanical properties Polym. Sci, Part B. Polyme Physics, 1994; 32: 921 ~ 927

9 陈桥. 苯并噁嗪树脂基纳米复合材料的制备、结构与 性能研究. 北京化工大学博士学位论文, 2006

10 Vanlandingham M R, Edujee R F, Gillepise J W. Relationships between stoichimetry, microstructure and properties for amine cured epoxies Polymer, 1999; 71 (5): $699 \sim 712$

11 Zhang J, Richardson M O W. Micro-Heterogeneity of urethanc vinylester resin networks Polymer, 2000; 41 (18): 6 843 \sim 6 849

12 信春玲.聚苯并噁嗪的非均相结构及其碳纤维复合 材料的固化动力学和界面性能研究.北京化工大学博士学位 论文,2005:62~66

(编辑 任涛)

2