首页 | 官方网站   微博 | 高级检索  
     

激波干扰对发汗冷却影响的数值模拟研究
引用本文:张红军,康宏琳.激波干扰对发汗冷却影响的数值模拟研究[J].宇航学报,2021,42(3):324-332.
作者姓名:张红军  康宏琳
作者单位:北京空天技术研究所,北京 100074
基金项目:国家自然科学基金(11802296);装备预研领域基金(61402060301)
摘    要:基于宏观表征体元(REV)的数值模拟方法开展了激波干扰对异质发汗冷却影响的数值模拟研究,获得了外部激波干扰与引射气体边界层耦合相互作用流场特征。研究结果表明,不同冷却介质对于冷却效率有显著的影响,冷却介质比热容越大,相同注入率条件下的冷却效果更好;入射激波干扰会显著影响多孔材料表面的压力分布,使得多孔材料内部冷却介质会发生显著的横向流动,流动的重新分配使得处于高压区的干扰位置处的冷却效果降低;激波干扰引起的局部压力梯度还会使得高温主流与冷却介质掺混加剧,同时壁面的恢复温度也随之升高,显著影响激波干扰局部位置处的冷却效果。

收稿时间:2020-02-26

Numerical Simulation Study on the Effects of Shock WaveInterference on Transpiration Cooling
ZHANG Hong jun,KANG Hong lin.Numerical Simulation Study on the Effects of Shock WaveInterference on Transpiration Cooling[J].Journal of Astronautics,2021,42(3):324-332.
Authors:ZHANG Hong jun  KANG Hong lin
Affiliation:Beijing Aerospace Technology Institute, Beijing 100074, China
Abstract:The shock wave interference on transpiration cooling is investigated numerically based on the macro representative elementary volume (REV) scale analysis method. The flow field characteristics of the shock wave/transpiration boundary interaction are obtained. The results indicate that different coolants have significant influence on the cooling efficiency. The larger the specific heat capacity of the cooling media, the better the cooling effect can be achieved under the same blowing ratio condition. The incident shock wave interference can affect the pressure distribution on the material surface, leading to obvious transverse flow of the coolant inside the porous media. The redistribution of the coolant flow can remarkably reduce the cooling effect of the shock wave interference location with higher pressure. The shock wave can also enhance the mixing of the high temperature mainstream and cooling media, and the wall recovery temperature can increase accordingly, weakening the cooling performance obviously.
Keywords:Transpiration cooling  Shock wave interference  Porous media  Numerical simulation  
本文献已被 CNKI 等数据库收录!
点击此处可从《宇航学报》浏览原始摘要信息
点击此处可从《宇航学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号