ZrB₂-SiC 超高温陶瓷的定量分析

王晓叶 郑 斌 冯志海

(航天材料及工艺研究所,先进功能复合材料技术重点实验室,北京 100076)

文 摘 利用 XRD 对超高温陶瓷粉进行分析,从衍射谱图能得到各物相组成为 ZrB₂、SiC、ZrO₂,并且采用全谱拟合法对各物相进行定量计算。结果显示,定量分析结果的绝对误差小于 2%,全谱拟合分析方法能准确地对超高温陶瓷的物相进行定量分析。

关键词 高温陶瓷,X射线衍射,全谱拟合法,物相定量,ZrB2-SiC

Quantitative Phase Analysis of The ZrB₂ –SiC Ultrahigh Temperature Ceramics

Wang Xiaoye Zheng Bin Feng Zhihai

(Science and Technology on Advanced Functional Composites Laboratory, Aerospace Research Institute of Materials & Processing Technology, Beijing 100076)

Abstract The phase composition of ZrB_2 -SiC ultrahigh temperature ceramics (UTC) are analyzed by XRD, and the quantitative analysis data were obtained from the Rietveld analyses. The results show that the phase compositions of UTC are ZrB_2 , SiC, ZrO_2 , the quantitative analysis data from this work are close to the real ratio of the samples. The Rietveld methord is reliable for the quantitative phase analysis of the ZrB_2 -SiC ultrahigh temperature ceramics.

Key words Ultrahigh temperature ceramic, X-ray diffraction, Rietiveld methord, Quantitative analysis, ZrB2-SiC

0 引言

超高温陶瓷是指在超高温(1 600 ~ 3 000℃)以 及反应气氛(如单原子氧)条件下工作、由具有热/化 学和物理稳定性好的高熔点化合物组成的新型陶瓷 材料。超高温陶瓷是高超声速临近空间飞行器的翼 前缘、鼻锥、超燃冲压发动机的前缘支板、燃烧室等部 位的关键结构件的侯选材料^[1-4]。超高温陶瓷粉体 也是 C/C、C/SiC 和 SiC/SiC 的基体和表面抗氧化、抗 烧蚀涂层的关键原材料^[5]。

ZrB₂由于具有高熔点(*T*_{melt}>3 040℃)、高弹性模 量、高电导率和热导率,良好的抗热震性和耐磨性、良 好的化学稳定性,成为最有潜力的超高温陶瓷之一。 纯 ZrB₂陶瓷通常要在2000℃左右惰性气氛下加压烧 结。为了制备 ZrB₂陶瓷,很多研究工作的重点是利 用烧结助剂、化学合成的粉末、放电等离子体烧结等 方法以获得致密的 ZrB,陶瓷。ZrB,陶瓷面临的挑战 是高温抗氧化问题。当暴露在空气中时,ZrB₂按照反应式(1)氧化成 ZrO₂和 B₂O₃。

$$\operatorname{ZrB}_{2} + \frac{5}{2} O_{2}(g) \longrightarrow \operatorname{ZrO}_{2} + B_{2} O_{3}$$
(1)

在 ZrB₂陶瓷中加入 SiC 或 MoSi₂等可生成 SiO₂保 护性氧化膜的第二相可以改善其在 1 100℃以上的抗 氧化性。SiC 还可以抑制晶粒生长,提高烧结性以及 材料的强度和断裂韧性。

对 ZrB₂-SiC 中相对含量的变化及化合物之间反 应机制的研究,十分重要,烧结的驱动力是表面自由 能降低,烧结机理可以分为致密化和晶粒粗化两种过 程。非氧化物陶瓷表面的氧化物杂质通过蒸发-凝 聚过程在非氧化物陶瓷烧结温度以下导致颗粒粗化。 由于粗化降低了烧结驱动力使完全致密化受到制约。 因此,ZrB₂、HfB₂、TiB₂等陶瓷烧结的关键是降低这些 原料粉末表面的氧化物含量。B₄C、WC、C 可以还原

收稿日期:2012-08-28

作者简介: 王晓叶, 1982年出生, 硕士, 主要从事微观结构分析方面的研究。E-mail: xiaoyewxy@163. com

这些材料粉末表面的 B_2O_3 、 ZrO_2 、 TiO_2 等。大量实验 结果已表明 ZrB_2 中氧化物的含量,对指导烧结工艺, 提高材料的抗氧化性和烧结性能具有十分重要的意 义^[6-9]。

本文针对 ZrB₂-SiC 体系进行研究,利用 XRD 和 微观表征手段,分析各物相的含量,确定化合物的成 分及含量。

1 实验

1.1 不同含量的 ZrB_2 和 SiC 配比

SiC:北京特博万德科技有限公司,0.5 μm, 99%。

ZrB₂:北京蒙泰有研技术开发中心 1~2 μm, 99.9%。

将 SiC 和 ZrB_2 以不同比例按表 1 混合,并研磨, 使其混合均匀。将混合样品进行试验,样品制成后发 现 ZrB_2 不纯,还含有 ZrO_2 ,所以实际为 3 个物相 ZrB_2 -SiC- ZrO_2 。

表1 样品的初始含量

Tab. 1 Initial phase composition of

ultrahigh temperature ceramic

试样	SiC/wt%	$\rm ZrB_2$ + $\rm ZrO_2/wt\%$
1#	30.19	69.81
2#	39.95	60.05
3#	50.07	49.93
4#	59.98	40.02

1.2 仪器

英国 Camscan 公司 Appolo 300 型场发射扫描电 子显微镜能谱附件。加速电压 20 kV,对材料的各元 素进行分析。

德国布鲁克 D8 Avanced X 射线衍射仪,采用 Cu 靶带石墨单色器(波长 0.154 06 nm),电压 40 kV,管 电流 40 mA,利用 Lynxeye 探测器,数据采集范围 10° ~80°,扫描速率 1°/min, FD=0.2 nm, RS=3 nm,两 个 Soller 狭缝分别为 4°和 2.5°。使用布鲁克设备的 软件 TOPAS 3 及 EVA,进行定量数据分析处理。

将粉末样品装入标准样品架中并注意减少样品的择优取向,每个样品做三次平行。

- 2 数据分析及处理
- 2.1 能谱元素分析

— 96 —

以2*样品为例,进行能谱实验,数据见表2。

表 2 元素含量

Tab. 2 Initial element composition of UHTC

元素	质量分数/%
С	17.64
0	6.49
Si	46.15
Zr	28.59

从表2可知,样品中含有C、Si、O、Zr四个元素,因为能谱无法分辨出B元素,已知ZrB₂未能在结果中显示,由此分析样品中,除了ZrB₂和SiC物相,可能含有ZrO₂、SiO₂、ZrC、B₂O₃等其他物相。

2.2 物相确定

由 X 射线衍射仪得到的衍射谱图见图 1,可以确 定材料中含有 SiC、ZrB₂和少量的 ZrO₂;并且 ZrB₂的 衍射峰比较明锐,晶粒较大,结晶较好,SiC 和 ZrO₂的 衍射峰较宽,说明晶粒较小。

图 1 三个物相的 X 射线衍射谱图

Fig. 1 X-ray diffraction pattern of the sample

对比 PDF 卡片和 ICSD 数据库得到信息,结果见表3。

表3 样品物相组成

 Tab. 3
 Phase composition of the sample

相	晶系	空间群	PDF 卡片号
SiC	Cubic	F43m(216)	00-001-1119
ZrB_2	Hexa	P6/mmc(191)	00-034-0423
ZrO ₂	Cubic	Fm3m(225)	00-027-0997

宇航材料工艺 http://www.yhelgy.com 2013 年 第2期

由图 1 和 PDF 卡片可知,31°左右出现的是 ZrO₂的(111)面衍射峰,33°左右出现的是 ZrB₂的(100)面衍射峰,35°左右出现的是 SiC 的(111)面的衍射峰。

另外,随着 SiC 含量的增加,SiC 的(111)面的衍 射峰的相对强度增加,ZrO₂的(111)面衍射峰相对强 度减弱。采用全谱拟合法对谱图进行精修,得到三个 物相的晶胞参数、晶面间距、半高宽;将半高宽数据代 入谢乐公式(1)^[10-11],计算各物相的晶粒尺寸,见表 3。

$$D_{\rm HKL} = \frac{K\lambda}{\beta_{\rm HKL}\cos\theta_{\rm HKL}}$$
(1)

式中, D_{HKL} 为晶粒在(HKL)面法线方向的平均厚度; λ 为所用 X 射线的波长; β_{HKL} 为(HKL)衍射的线宽, 定义为半高宽; θ_{HKL} 为(HKL)衍射的布拉格角;K为 常数,在0.89~1.35之间。

从表 4 中数据可知, 与谱图有很好的对应, SiC 和 ZrO₂的晶粒尺寸都很小,分别为 3.33 和 2.87 nm。 这样的谱图, 作全谱拟合定量时, 需要作精修及分析。

表4 超高温陶瓷样品的物相结构参数

Tab. 4 Crystal structure parameters of ultrahigh temperature ceramic

物相	晶胞参数 /nm	d ⁄nm	晶粒尺寸 /nm
SiC	<i>a</i> =0.4358	0.2516	3.33
ZrB ₂	a = b = 0.3169, c = 0.3530	0.2743	21.38
$\rm ZrO_2$	<i>a</i> =0.5077	0.2930	2.87

2.3 全谱拟合无标样定量法(Rietiveld)

Rietiveld 利用衍射图谱上每步的数据谱,即以一 个晶体结构模型为基础,利用它的各种晶体结构参数 与峰形函数、峰宽函数等计算一张在 2θ 范围内的理 论的多晶体衍射谱。将此计算谱与试验测得的衍射 谱相比较,根据其差别修改结构模型,结构参数及峰 形函数等因子,以使计算谱和试验谱的差最小(最小 二乘法),这样逐渐趋近的过程就称为拟合^[12]。

采用 Rietiveld 法对四个配比的样品进行分析,以 ZrB₂-SiC-ZrO₂体系三个物相的信息,在布鲁克 X 射 宇航材料工艺 http://www.yhclgy.com 2013 年 第2 期 线衍射仪设备自带的软件 TOPAS 软件中计算,需要加入三个物相的 CIF 文件,在精修过程中,需要修正背底函数、峰宽函数、仪器因子、线形函数及择优取向等,并保证他们的精修因子 *R*_{wp}小于 15,精修后的谱图见图 2。

首先分析原料粉中 ZrB_2 (含有 ZrO_2) 各组分的 含量, Rietiveld 法定出 ZrB_2 - ZrO_2 混合物中 ZrB_2 含量 为94.05%, ZrO_2 含量为5.95%;采用此种方法对四 个配比的样品进行计算分析,结果见表5。

在表 5 中,3*样品的 ZrB₂物相的含量绝对误差值 最大,为1.55%,则相对误差为3.30%;1*样品的 SiC 物相的含量相对误差最大,为4.5%,则绝对误差为 1.36%。结果所示,在四个样品的测试值和比对值的 绝对误差都比较小,最大值为1.55%,其结果有很好 的准确性。

另外,在四个样品中,经过 Rietiveld 法得到的 ZrO₂含量分别为4.25%,3.65%,2.61%,2.23%,因 为ZrO₂是 ZrB₂里的杂质,且ZrO₂含量较少,晶粒较小 导致 谱图 宽化,但是数据中最大的相对误差为 0.31%,数值误差是比较小的,所以即使含量较低且 谱图被宽化的物相采用 Rietiveld 法也能够做准确的 定量分析。

通过 Rietiveld 法定量法,能准确定量分析超高温 陶瓷粉末中氧化物含量,因此可以定量加入还原材 料,降低粉末表面的氧含量,提高材料的抗氧化性和 烧结性能。

试样	组分	比对值/%	测量值/%	绝对误差/%	相对误差/%
1#	SiC	30.19	28.83	1.36	4.50
	ZrB_2	65.73	66.92	1.19	1.81
	$\rm ZrO_2$	4.08	4.25	0.17	4.17
2#	SiC	39.95	38.92	1.03	2.58
	ZrB_2	56.54	57.44	0.90	1.58
	$\rm ZrO_2$	3.51	3.65	0.14	3.99
3#	SiC	50.07	48.83	1.24	2.48
	ZrB_2	47.01	48.56	1.55	3.30
	$\rm ZrO_2$	2.92	2.61	0.31	10.62
4#	SiC	59.98	60.54	0.56	0.93
	ZrB_2	37.68	37.22	0.46	1.22
	$\rm ZrO_2$	2.34	2.23	0.11	4.70

表 5 ZrB₂-SiC-ZrO₂体系样品定量结果¹⁾ Tab. 5 Results of quantitative phase analyses of ZrB₂-SiC-ZrO₂

3 结论

(1)用 X 射线 Rietiveld 法可减少一些仪器系统 误差对定量结果的影响,绝对误差小于 2%,精确地 确定各物相的含量;对衍射峰宽化(晶粒细化)的复 杂谱图也能准确的精修,确定相含量。

(2)采用 Rietiveld 法作定量分析,可以解决超高 温陶瓷各物相含量及杂质氧化物的含量,为消除氧化 物提供了数据支持,提高材料的抗氧化性和烧结性能 具有十分重要的意义。

参考文献

 $[\,1\,]$ Fahrenholtz W G, Hilmas G E. NSF–AFOSR joint workshop on future ultra-high temperature materials [R]. NSF Grant DMR–0403004

 $[\,2\,]$ Upadhya K, Yang J M, Hoffmann W P. Materials for ultra-high temperature structural applications $[\,J\,]$. Am. Ceram. Soc. Bull, 1997, 76(12):51–56

[3] 韩杰才, 胡平, 张幸红, 等. 超高温材料的研究进展 [J]. 固体火箭技术, 2005, 28(4): 289-294

[4] Bronson A, Ma Y T, Mutso R. Compatibility of refractory metal borider/oxide composites at ultra-high temperature [J]. Electrochem. Soc. ,1992,139(11):3183-3196 [5] 萨姆索洛夫, 难熔化合物手册[M]. 北京: 中国工业 出版社, 1965: 145-289

[6] Levine S R, Opila E J, Halbig M C, et al. Evaluation of ultra-high temperature ceramics for aeropropulsion use[J]. Europe Ceram Society, 2002, 22(14/15):2757-2767

[7] Opeka M M, Talmy I G, Zayko J A. Oxidation-based materials selection for 2000°C hypersonic aerosurfaces, theoretical considerations and historical experience [J]. Material Science, 2004,39(19):5887-5904

[8] Tripp W C, Davis H H, Graham H C. Effect of a SiC addition on the oxidation of ZrB_2 [J]. Ceram. Bull., 1973, 52 (8):612-616

[9]于军,章德铭,等,超高温陶瓷材料的研究[J]. 热喷 涂技术,2011,3(1):29-33

[10] 李树堂. 晶体 X 射线衍射学基础 [M]. 北京:冶金 工业出版社,1990

[11] 李树堂. X 射线衍射实验方法 [M]. 北京:冶金工业 出版社,1990

[12] 马礼敦. 近代 X 射线多晶体衍射 [M]. 北京:化学 工业出版社,2004

(编辑 任涛)