留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于雾计算的无线传感器网络联合入侵检测算法

朱梦圆 陈卓 刘鹏飞 吕娜

朱梦圆, 陈卓, 刘鹏飞, 等 . 基于雾计算的无线传感器网络联合入侵检测算法[J]. 北京航空航天大学学报, 2022, 48(10): 1943-1950. doi: 10.13700/j.bh.1001-5965.2021.0766
引用本文: 朱梦圆, 陈卓, 刘鹏飞, 等 . 基于雾计算的无线传感器网络联合入侵检测算法[J]. 北京航空航天大学学报, 2022, 48(10): 1943-1950. doi: 10.13700/j.bh.1001-5965.2021.0766
ZHU Mengyuan, CHEN Zhuo, LIU Pengfei, et al. Fog computing-based federated intrusion detection algorithm for wireless sensor networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1943-1950. doi: 10.13700/j.bh.1001-5965.2021.0766(in Chinese)
Citation: ZHU Mengyuan, CHEN Zhuo, LIU Pengfei, et al. Fog computing-based federated intrusion detection algorithm for wireless sensor networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1943-1950. doi: 10.13700/j.bh.1001-5965.2021.0766(in Chinese)

基于雾计算的无线传感器网络联合入侵检测算法

doi: 10.13700/j.bh.1001-5965.2021.0766
基金项目: 

国家自然科学基金 62074131

详细信息
    通讯作者:

    吕娜, E-mail: Lvnn2007@163.com

  • 中图分类号: TP393

Fog computing-based federated intrusion detection algorithm for wireless sensor networks

Funds: 

National Natural Science Foundation of China 62074131

More Information
  • 摘要:

    为了保障无线传感器网络的安全性,提出一种基于雾计算的联合入侵检测算法Fed-XGB。Fed-XGB算法通过引入雾计算节点扩展网络边缘,减少通信时延,在提升联合学习全局模型和局部模型准确率的同时,降低了传输带宽和隐私泄露风险;通过改进基于直方图的近似计算方法,适应无线传感器网络数据不均衡特征;通过引入TOP-K梯度选择,最小化模型参数上传次数,提高模型参数交互效率。实验结果表明: Fed-XGB算法的检测准确率在0.97以上,误报率在0.036以下,优于其他对比算法;在遭受中毒攻击及数据含噪的情况下,算法检测分类性能依然稳定,具有较强的鲁棒性。

     

  • 图 1  联合入侵检测算法框架

    Figure 1.  Federated intrusion detection algorithm framework

    图 2  不同恶意节点数量下的性能比较

    Figure 2.  Performance comparison of different malicious nodes

    图 3  Fed-XGB算法加噪声前后的性能对比

    Figure 3.  Performance comparison of Fed-XGB algorithm under adding noise

    图 4  FedSGD算法加噪前后的性能比较

    Figure 4.  Performance comparison of FedSGD algorithm under adding noise

    表  1  仿真参数设置

    Table  1.   Simulation parameter settings

    参数 数值/种类
    网络覆盖范围/(m×m) 200×200
    节点数量 300
    节点最大覆盖范围/m 20
    信道容量/(Mbit·s-1) 2
    攻击节点数目 15
    路由协议 LEACH
    MAC协议 TDMA
    采样周期/s 5
    下载: 导出CSV

    表  2  数据集相关信息

    Table  2.   Related information of datasets

    数据集 网络攻击类别
    WSN-DS[19] Blackhole、Grayhole、Flooding、Scheduling
    WSN-ids Blackhole、Grayhole、Flooding、Scheduling
    CICIDS 2017[20] Brute Force FTP、Brute Force SSH、DoS、Heartbleed、Web Attack、Infiltration、Botnet
    下载: 导出CSV

    表  3  不同算法整体性能对比

    Table  3.   Comparison of overall performance of each algorithm

    算法 WSN-DS CICIDS2017
    Accuracy FAR Accuracy FAR
    RF 0.884 0.152 0.822 0.223
    GRU-SVM 0.966 0.136 0.896 0.104
    ICNN 0.972 0.086 0.956 0.134
    VAE 0.991 0.035 0.971 0.108
    XGBoost 0.954 0.121 0.953 0.136
    FedSGD 0.981 0.049 0.966 0.102
    Fed-XGB 0.989 0.029 0.978 0.036
    下载: 导出CSV

    表  4  不同联合学习参数对上传次数的影响

    Table  4.   Influence of different federated learning parameters on communication rounds

    方法 E B 上传次数
    FedSGD 1 822
    Fed-XGB 5 small 324
    Fed-XGB 10 small 192
    Fed-XGB 20 small 122
    Fed-XGB 5 large 256
    Fed-XGB 10 large 218
    Fed-XGB 20 large 178
    下载: 导出CSV
  • [1] SALEHI M, HOSSAIN E. Federated learning in unreliable and resource-constrained cellular wireless networks[J]. IEEE Transactions on Communications, 2021, 69(8): 5136-5151. doi: 10.1109/TCOMM.2021.3081746
    [2] DE SOUZA C A, WESTPHALL C B, MACHADO R B, et al. Hybrid approach to intrusion detection in fog-based IoT environments[J]. Computer Networks, 2020, 180: 107417. doi: 10.1016/j.comnet.2020.107417
    [3] ZHANG W J, HAN D Z, LI K C, et al. Wireless sensor network intrusion detection system based on MK-ELM[J]. Soft Computing, 2020, 24(16): 12361-12374. doi: 10.1007/s00500-020-04678-1
    [4] TANG T A, MCLERNON D, MHAMDI L, et al. Intrusion detection in SDN-based networks: Deep recurrent neural network approach[M]//ALAZAB M, TANG M J. Deep learning applications for cyber security. Berlin: Springer, 2019: 175-195.
    [5] LI X M, ZHU L X, CHU X, et al. Edge computing-enabled wireless sensor networks for multiple data collection tasks in smart agriculture[J]. Journal of Sensors, 2020, 2020: 4398061.
    [6] 周纯毅, 陈大卫, 王尚, 等. 分布式深度学习隐私与安全攻击研究进展与挑战[J]. 计算机研究与发展, 2021, 58(5): 927-943. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ202105003.htm

    ZHOU C Y, CHEN D W, WANG S, et al. Research and challenge of distributed deep learning privacy and security attack[J]. Journal of Computer Research and Development, 2021, 58(5): 927-943(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ202105003.htm
    [7] KHAN L U, SAAD W, HAN Z, et al. Federated learning for internet of things: Recent advances, taxonomy, and open challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1759-1799.
    [8] CHEN Z, LYU N, LIU P F, et al. Intrusion detection for wireless edge networks based on federated learning[J]. IEEE Access, 2020, 8: 217463-217472. doi: 10.1109/ACCESS.2020.3041793
    [9] YANG H Y, WANG F Y. Wireless network intrusion detection based on improved convolutional neural network[J]. IEEE Access, 2019, 7: 64366-64374. doi: 10.1109/ACCESS.2019.2917299
    [10] ZHU G X, LIU D Z, DU Y Q, et al. Toward an intelligent edge: Wireless communication meets machine learning[J]. IEEE Communications Magazine, 2020, 58(1): 19-25. doi: 10.1109/MCOM.001.1900103
    [11] CHEKIRED D A, KHOUKHI L, MOUFTAH H T. Fog-based distributed intrusion detection system against false metering attacks in smart grid[C]//2019 IEEE International Conference on Communications. Piscataway: IEEE Press, 2019: 1-6.
    [12] MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[EB/OL]. (2017-02-28)[2021-12-01]. https:arxiv.org/abs/1602.05629.
    [13] PREUVENEERS D, RIMMER V, TSINGENOPOULOS I, et al. Chained anomaly detection models for federated learning: an intrusion detection case study[J]. Applied Sciences, 2018, 8(12): 2663. doi: 10.3390/app8122663
    [14] CAMPOS E M, SAURA P F, GONZÁLEZ-VIDAL A, et al. Evaluating federated learning for intrusion detection in internet of things: Review and challenges[J]. Computer Networks, 2022, 203: 108661. doi: 10.1016/j.comnet.2021.108661
    [15] KELLI V, ARGYRIOU V, LAGKAS T, et al. IDS for industrial applications: A federated learning approach with active personalization[J]. Sensors(Basel, Switzerland), 2021, 21(20): 6743. doi: 10.3390/s21206743
    [16] HAN Y F, ZHANG X L. Robust federated training via collaborative machine teaching using trusted instances[EB/OL]. (2019-05-08)[2021-12-10]. https://arxiv.org/abs/1905.02941.
    [17] WANG L P, WANG W, LI B. CMFL: Mitigating communication overhead for federated learning[C]//2019 IEEE 39th International Conference on Distributed Computing Systems. Piscataway: IEEE Press, 2019: 954-964.
    [18] CHEN T Q, GUESTRIN C. XGBost: A scalble tree boosting system[C]//Proceedings of 22nd ACM SIGKDD International Conference on knowledge Discovery and Data Mining. New York: ACM, 2016: 785-794.
    [19] ALMOMANI I, AL-KASASBEH B, AL-AKHRAS M. WSN-DS: A dataset for intrusion detection systems in wireless sensor networks[J]. Journal of Sensors, 2016, 2016: 4731953.
    [20] SHARAFALDIN I, LASHKARI H A, GHORBANI A A. Toward generating a new intrusion detection dataset and intrusion traffic characterization[C]//Proceedings of the 4th International Conference on Information Systems Security and Privacy, 2018, 1: 108-116.
    [21] JOHNSON S R, JAIN A. An improved intrusion detection system using random forest and random projection[J]. International Journal of Scientific & Engineering Research, 2016, 7(10): 1424-1430.
    [22] AGARAP A F M. A neural network architecture combining gated recurrent unit (GRU) and support vector machine (SVM) for intrusion detection in network traffic data[C]//Proceedings of the 2018 10th International Conference on Machine Learning and Computing, 2018: 26-30.
    [23] 刘月峰, 王成, 张亚斌, 等. 面向网络入侵检测系统的深度卷积神经网络模型[J]. 内蒙古科技大学学报, 2018, 37(1): 59-64. doi: 10.16559/j.cnki.2095-2295.2018.01.013

    LIU Y F, WANG C, ZHANG Y B, et al. Deep convolutional neural network model for network intrusion detection system[J]. Journal of Inner Mongolia University of Science and Technology, 2018, 37(1): 59-64(in Chinese). doi: 10.16559/j.cnki.2095-2295.2018.01.013
    [24] FAN L N, YANG J H, MI T J. Malicious behavior catcher: An intrusion detection system based on VAE[C]//Communications, Signal Processing, and Systems, 2021.
    [25] 张阳, 姚原岗. 基于XGboost算法的网络入侵检测研究[J]. 信息网络安全, 2018(9): 102-105. doi: 10.3969/j.issn.1671-1122.2018.09.016

    ZHANG Y, YAO Y G. Research on network intrusion detection based on XGboost[J]. Netinfo Security, 2018(9): 102-105(in Chinese). doi: 10.3969/j.issn.1671-1122.2018.09.016
    [26] 吴亚丽, 李国婷, 付玉龙, 等. 基于自适应鲁棒性的入侵检测模型[J]. 控制与决策, 2019, 34(11): 2330-2336. doi: 10.13195/j.kzyjc.2019.0592

    WU Y L, LI G T, FU Y L, et al. A new intrusion detection model based on adaptability and robustness[J]. Control and Decision, 2019, 34(11): 2330-2336(in Chinese). doi: 10.13195/j.kzyjc.2019.0592
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  329
  • HTML全文浏览量:  134
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 录用日期:  2022-02-25
  • 网络出版日期:  2022-03-16
  • 整期出版日期:  2022-10-20

目录

    /

    返回文章
    返回
    常见问答