留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空铝试块疲劳裂纹相控阵超声成像检测

彭朝勇 胥松柏 杜创洲 张杰

彭朝勇, 胥松柏, 杜创洲, 等 . 航空铝试块疲劳裂纹相控阵超声成像检测[J]. 北京航空航天大学学报, 2022, 48(12): 2398-2404. doi: 10.13700/j.bh.1001-5965.2021.0161
引用本文: 彭朝勇, 胥松柏, 杜创洲, 等 . 航空铝试块疲劳裂纹相控阵超声成像检测[J]. 北京航空航天大学学报, 2022, 48(12): 2398-2404. doi: 10.13700/j.bh.1001-5965.2021.0161
PENG Chaoyong, XU Songbai, DU Chuangzhou, et al. Ultrasonic phased array imaging on aviation aluminum block fatigue crack[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2398-2404. doi: 10.13700/j.bh.1001-5965.2021.0161(in Chinese)
Citation: PENG Chaoyong, XU Songbai, DU Chuangzhou, et al. Ultrasonic phased array imaging on aviation aluminum block fatigue crack[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2398-2404. doi: 10.13700/j.bh.1001-5965.2021.0161(in Chinese)

航空铝试块疲劳裂纹相控阵超声成像检测

doi: 10.13700/j.bh.1001-5965.2021.0161
基金项目: 

国家自然科学基金 61501381

详细信息
    通讯作者:

    彭朝勇, E-mail: pengmd@163.com

  • 中图分类号: V221+.3;TB553

Ultrasonic phased array imaging on aviation aluminum block fatigue crack

Funds: 

National Natural Science Foundation of China 61501381

More Information
  • 摘要:

    表面疲劳裂纹扩展可导致结构失效,利用相控阵超声成像技术监测疲劳裂纹,获取结构完整性评价所需裂纹信息,可及时对结构失效提出安全预警。采用三点弯曲疲劳试验法在航空铝试块上生长疲劳裂纹,对裂纹开口面材料进行逐步切削来获得不同长度的疲劳裂纹,利用相控阵超声全矩阵采集(FMC)和全聚焦方法(TFM)获得的裂纹尖端和开口图像信息来监测裂纹扩展和测量裂纹长度,并测试了相控阵超声探头放置位置、裂纹张开/闭合、裂纹表面粗糙度对超声成像检测效果的影响。研究结果表明:相控阵超声探头从裂纹侧面入射检测能更好地对裂纹进行超声成像,并真实反映材料内部裂纹扩展前缘形貌。当疲劳裂纹长度大于3倍超声波长时,裂纹尖端和开口图像完全分离,相控阵超声全矩阵采集和全聚焦成像技术可有效测量裂纹长度,测量误差小于0.2 mm。相比裂纹张开时,疲劳裂纹闭合效应会使裂纹尖端超声图像信号减弱4.5 dB,长度测量值小0.6 mm。

     

  • 图 1  全矩阵数据采集

    Figure 1.  Full matrix data capture

    图 2  全聚焦成像原理

    Figure 2.  Imaging principle of total focusing

    图 3  裂纹成像和测量方法

    Figure 3.  Crack imaging and sizing method

    图 4  试块及试验设计

    Figure 4.  Testing block and testing plan

    图 5  疲劳裂纹超声试验系统

    Figure 5.  Ultrasonic testing system on fatigue crack

    图 6  相控阵超声探头位置与成像效果

    Figure 6.  Phased array ultrasonic probe position and images results

    图 7  疲劳裂纹生长监测

    Figure 7.  Fatigue crack growth monitoring

    图 8  超声图像法测量疲劳裂纹长度

    Figure 8.  Fatigue crack sizing by ultrasonic image method

    图 9  疲劳裂纹开合超声图像

    Figure 9.  Ultrasonic image of fatigue crack opening and closing

    图 10  断面不同粗糙度表面超声成像

    Figure 10.  Ultrasonic imaging of fracture and crack surface with different roughness

    表  1  相控阵超声探头参数

    Table  1.   Parameters of phased array ultrasonic probe

    参数 晶片数目 中心频率/MHz 晶片宽度/mm 晶片间距/mm 晶片长度/mm
    数值 128 10 0.25 0.3 10
    下载: 导出CSV
  • [1] COLLINS J. Failure of materials in mechanical design: Analysis, prediction, prevention[M]. New York: John Wiley & Sons Inc, 1993.
    [2] SIERADZKI K, NEWMAN R. Stress-corrosion cracking[J]. Journal of Physics and Chemistry of Solids, 1987, 48(11): 1101-1113. doi: 10.1016/0022-3697(87)90120-X
    [3] WOODTLI J, KIESELBACH R. Damage due to hydrogen embrittlement and stress corrosion cracking[J]. Engineering Failure Analysis, 2000, 7(6): 427-450. doi: 10.1016/S1350-6307(99)00033-3
    [4] CAMPBELL F. Elements of metallurgy and engineering alloys[M]. Cleveland: ASM International, 2008.
    [5] KULKARNI S, ACHENBACH J. Structural health monitoring and damage prognosis in fatigue[J]. Structural Health Monitoring-An International Journal, 2008, 7(1): 37-49. doi: 10.1177/1475921707081973
    [6] ZHAO Y, YANG B. Scale-induced effects on fatigue properties of the cast steel for Chinese railway rolling wagon bogie frames[J]. Advanced Materials Research, 2010, 118-120(1): 59-64.
    [7] KLINGER C, BETTGE D. Axle fracture of an ICE3 high speed train[J]. Engineering Failure Analysis, 2013, 35: 66-81. doi: 10.1016/j.engfailanal.2012.11.008
    [8] SCHIJVE J. Fatigue of structures and materials[M]. Berlin: Springer, 2009.
    [9] ALMOND D, WEELES B, LI T, et al. Thermographic techniques for the detection of cracks in metallic components[J]. Insight, 2011, 53(11): 614-620. doi: 10.1784/insi.2011.53.11.614
    [10] LIM H, KIM Y, KOO G, et al. Development and field application of a nonlinear ultrasonic modulation technique for fatigue crack detection without reference data from an intact condition[J]. Smart Materials and Structures, 2016, 25(9): 1-14.
    [11] CHENG J, POTTER J, CROXFORD A, et al. Monitoring fatigue crack growth using nonlinear ultrasonic phased array imaging[J]. Smart Materials and Structures, 2017, 26(5): 1-14.
    [12] QUAEGEBEUR N, BOUSLAMA N, BILODEAU M, et al. Guided wave scattering by geometrical change or damage: Application to characterization of fatigue crack and machined notch[J]. Ultrasonics, 2017, 73(1): 187-195.
    [13] HOLMES C, DRINKWATER B, WILCOX P. Postprocessing of the full matrix of ultrasonic transmit-receive array data for nondestructive evaluation[J]. NDT & E International, 2005, 38(8): 701-711.
    [14] CAMACHO J, ATEHORTUA D, CRUZA J, et al. Ultrasonic crack evaluation by phase coherence processing and TFM and its application to online monitoring in fatigue tests[J]. NDT & E International, 2018, 93(10): 164-174.
    [15] ZHANG J, DRINKWATER B, WILCOX P, et al. Defect detection using ultrasonic arrays: The multi-mode total focusing method[J]. NDT & E International, 2010, 43(2): 123-133.
    [16] ZHANG J, DRINKWATER B, WILCOX P. Efficient immersion imaging of components with nonplanar surfaces[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2014, 61(8): 1284-1295. doi: 10.1109/TUFFC.2014.3035
    [17] SHAKIBI B, HONARVAR F, MOLES M, et al. Resolution enhancement of ultrasonic defect signals for crack sizing[J]. NDT & E International, 2012, 52(11): 37-50.
    [18] FELICE M, VELICHKO A, WILCOX P. Accurate depth mea-surement of small surface-breaking cracks using an ultrasonic array post-processing technique[J]. NDT & E International, 2014, 68(12): 105-112.
    [19] PENG C, BAI L, ZHANG J, et al. The sizing of small surface-breaking fatigue cracks using ultrasonic arrays[J]. NDT & E International, 2018, 99(10): 64-71.
    [20] SATYARNARAYAN L, PUKAZHENDHI D, BALASUBRAMANIAM K, et al. Phased array ultrasonic measurement of fatigue crack growth profiles in stainless steel pipes[J]. Journal of Pressure Vessel Technology-Transactions of the ASME, 2007, 129(4): 737-743. doi: 10.1115/1.2767367
    [21] 周正干, 彭地, 李洋, 等. 相控阵超声检测技术中的全聚焦成像算法及其校准研究[J]. 机械工程学报, 2015, 51(10): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201510001.htm

    ZHOU Z G, PENG D, LI Y, et al. Full focus imaging algorithm and its calibration in phased array ultrasonic testing technology[J]. Chinese Journal of Mechanical Engineering, 2015, 51(10): 1-7(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201510001.htm
    [22] FAN C, CALEAP M, PAN M, et al. A comparison between ultrasonic array beamforming and super resolution imaging algorithms for non-destructive evaluation[J]. Ultrasonics, 2014, 54(7): 1842-1850. doi: 10.1016/j.ultras.2013.12.012
    [23] ASTM. Stardard test method for measurement of frature toughness: ASTM E 1820—2020[S]. Conshohocken: ASTM, 2020.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  217
  • HTML全文浏览量:  73
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-01
  • 录用日期:  2021-05-14
  • 网络出版日期:  2021-05-26
  • 整期出版日期:  2022-12-20

目录

    /

    返回文章
    返回
    常见问答