留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑制造约束的印刷电路板式换热器优化设计

杜默 孟宝 潘丰 万敏

杜默, 孟宝, 潘丰, 等 . 考虑制造约束的印刷电路板式换热器优化设计[J]. 北京航空航天大学学报, 2022, 48(10): 1994-2005. doi: 10.13700/j.bh.1001-5965.2021.0045
引用本文: 杜默, 孟宝, 潘丰, 等 . 考虑制造约束的印刷电路板式换热器优化设计[J]. 北京航空航天大学学报, 2022, 48(10): 1994-2005. doi: 10.13700/j.bh.1001-5965.2021.0045
DU Mo, MENG Bao, PAN Feng, et al. Optimal design of printed circuit heat exchanger considering manufacturing constraints[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1994-2005. doi: 10.13700/j.bh.1001-5965.2021.0045(in Chinese)
Citation: DU Mo, MENG Bao, PAN Feng, et al. Optimal design of printed circuit heat exchanger considering manufacturing constraints[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1994-2005. doi: 10.13700/j.bh.1001-5965.2021.0045(in Chinese)

考虑制造约束的印刷电路板式换热器优化设计

doi: 10.13700/j.bh.1001-5965.2021.0045
基金项目: 

装发领域基金 61409230213

详细信息
    通讯作者:

    孟宝, E-mail: mengbao@buaa.edu.cn

  • 中图分类号: V231.1+3; TG335

Optimal design of printed circuit heat exchanger considering manufacturing constraints

Funds: 

Fund in the Field of Decoration and Development 61409230213

More Information
  • 摘要:

    针对印刷电路板式换热器(PCHE)的微流道结构参数设计制造一体化问题,开展了考虑制造约束条件的换热器性能优化的研究。通过流体仿真分析了流道宽度、深度和深宽比对温度分布、压力损失和换热系数的影响。使用多目标遗传算法(MOGA)建立了换热性能的多参数多目标性能优化仿真模型,根据性能优化获得的设计参数建立微流道结构辊压成形工艺仿真模型,得到制造约束条件,将制造约束反馈到性能优化仿真模型中,得到宽为0.29 mm、深为0.39 mm的矩形微流道优化设计参数,且通过辊对辊(R2R)的辊压工艺实验验证了该优化方法的可行性。考虑制造约束的换热器优化设计方法在性能优化设计阶段引入工艺限制条件,是实现换热器一体化设计制造的有效手段。

     

  • 图 1  辊压成形工艺示意图

    Figure 1.  Schematic diagram of roller forming process

    图 2  印刷电路板式换热器微流道参数示意图

    Figure 2.  Schematic diagram of microchannel dimensions in PCHE

    图 3  仿真模型边界条件示意图

    Figure 3.  Schematic diagram of boundary conditions of simulation model

    图 4  微流道深度h和宽度w对温降ΔT的影响

    Figure 4.  Influence of microchannel deep h and width w on drop of temperature ΔT

    图 5  热流体横截面示意图

    Figure 5.  Schematic diagram of cross section of hot fluid

    图 6  微流道深度h和宽度w对压降ΔP的影响

    Figure 6.  Influence of microchannel deep h and width w on drop of pressure ΔP

    图 7  w<0.2时微流道深度h和宽度w对传热系数K的影响

    Figure 7.  Influence of microchannel deep h and width w on heat transfer coefficient K when w < 0.2

    图 8  微流道深度h和宽度w对传热系数K的影响

    Figure 8.  Influence of microchannel deep h and width w on heat transfer coefficient K

    图 9  微流道深宽比λ对温降ΔT的影响

    Figure 9.  Influence of microchannel aspect ratio λ on drop of temperature ΔT

    图 10  微流道深宽比λ对压降ΔP的影响

    Figure 10.  Influence of microchannel aspect ratio λ on drop of pressure ΔP

    图 11  微流道深宽比λ对传热系数K的影响

    Figure 11.  Influence of microchannel aspect ratio λ on heat transfer coefficient K

    图 12  考虑制造约束的换热器优化设计方法

    Figure 12.  Optimal design method for heat exchangers considering manufacturing constraints

    图 13  辊压工艺仿真模型

    Figure 13.  Rolling process simulation model

    图 14  304不锈钢试样的电辅助变形行为

    Figure 14.  Electrically assisted deformation behavior of 304 stainless steel specimen

    图 15  第1次优化后3种微流道尺寸的辊压仿真结果

    Figure 15.  Rolling simulation results of three microchannel sizes after the first optimization

    图 16  优化方案1~3辊压后的仿真力对比

    Figure 16.  Simulation force comparison after rolling of optimization scheme 1-3

    图 17  三种微流道尺寸辊压后的计算下压力对比

    Figure 17.  Calculated force comparison after rolling of three microchannel sizes

    图 18  第2次优化后3种微流道尺寸的辊压仿真结果

    Figure 18.  Rolling simulation results of three microchannel sizes after the second optimization

    图 19  优化方案4~6辊压后的仿真力对比

    Figure 19.  Simulation force comparison after rolling of optimization scheme 4-6

    图 20  电辅助R2R辊压设备

    Figure 20.  Equipment of electrically assisted R2R roller

    图 21  辊压成形微流道截面图

    Figure 21.  Microchannel cross-section of roller forming

    图 22  辊压成形304不锈钢板材

    Figure 22.  304 stainless steel sheet of roller forming

    表  1  固体材料属性[25]

    Table  1.   Properties of solid materials[25]

    属性 密度/(kg·m-3) 比热容/(J·(kg·K)-1) 温度/℃ 热传导率/(W·(m·K)-1)
    数值 7 900 502.48 20 14.6
    50 15.1
    100 16.1
    200 17.9
    400 18
    600 20.8
    800 23.9
    下载: 导出CSV

    表  2  流体材料属性

    Table  2.   Properties of fluid materials

    流体 密度/(kg·m-3) 比热容/(J·(kg·K)-1) 热传导率/(W·(m·K)-1)
    液态水 998.2 4 182 0.6
    氩气 1.122 8 520.64 0.015 8
    下载: 导出CSV

    表  3  第1次优化仿真数据结果

    Table  3.   The first optimization simulation results

    方案 微流道宽度w/mm 微流道深度h/mm 温降ΔT/℃ 压降ΔP/MPa 传热系数K/(W·(m 2·K)-1) 质量m/g
    优化方案1 0.12 0.3 235.79 20.3 1.34×105 0.20
    优化方案2 0.1 0.37 240.54 20.3 1.33×105 0.20
    优化方案3 0.29 0.39 124.18 20.2 1.25×105 0.17
    下载: 导出CSV

    表  4  第2次优化仿真数据结果

    Table  4.   The second optimization simulation results

    参数 微流道宽度w/mm 微流道深度h/mm 温降ΔT/℃ 压降ΔP/MPa 传热系数K/(W·(m2·K)-1) 质量m/g
    优化方案4 0.29 0.32 133.93 0.17 1.26×105 0.18
    优化方案5 0.22 0.32 158.72 0.20 1.28×105 0.19
    优化方案6 0.17 0.31 185.35 0.24 1.30×105 0.19
    下载: 导出CSV

    表  5  辊压填充结果

    Table  5.   Results of rolling

    方案 深宽比λ d/mm 填充效果
    优化方案1 2.5 0.11 未填充满
    优化方案2 3.7 0.10 未填充满
    优化方案3 1.34 0 填充满
    优化方案4 1.1 0 填充满
    优化方案5 1.45 0 基本填充满
    优化方案6 1.82 0 部分填满
    注:dhz的差值。
    下载: 导出CSV

    表  6  第3次优化仿真数据结果

    Table  6.   The third optimization simulation results

    参数 微流道宽度w/mm 微流道深度h/mm 深宽比λ 温降ΔT/℃ 压降ΔP/MPa 传热系数K/(W·(m 2·K)-1) 质量m/g
    优化方案7 0.22 0.33 1.5 156.95 0.202 1.28×105 0.184
    优化方案8 0.22 0.29 1.31 164.42 0.212 1.28×105 0.188
    优化方案9 0.29 0.39 1.34 124.18 0.159 1.25×105 0.169
    下载: 导出CSV
  • [1] 张文毓. 印刷电路板式换热器的研究与应用[J]. 上海电气技术, 2019, 12(4): 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-SDHG202203021.htm

    ZHANG W Y. Research and application of printed circuit plate heat exchanger[J]. Journal of Shanghai Electric Technology, 2019, 12(4): 64-68(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDHG202203021.htm
    [2] MENG B, WAN M, ZHAO R, et al. Micromanufacturing technologies of compact heat exchangers for hypersonic precooled airbreathing propulsion: A review[J]. Chinese Journal of Aeronautics, 2021, 34(2): 79-101. doi: 10.1016/j.cja.2020.03.028
    [3] KIM I H, NO H C. Physical model development and optimal design of PCHE for intermediate heat exchangers in HTGRs[J]. Nuclear Engineering and Design, 2012, 243: 243-250. doi: 10.1016/j.nucengdes.2011.11.020
    [4] KIM I H, NO H C, LEE J I, et al. Thermal hydraulic performance analysis of the printed circuit heat exchanger using a helium test facility and CFD simulations[J]. Nuclear Engineering and Design, 2009, 239(11): 2399-2408. doi: 10.1016/j.nucengdes.2009.07.005
    [5] KIM I H, SUN X. CFD study and PCHE design for secondary heat exchangers with FLiNaK-Helium for SmAHTR[J]. Nuclear Engineering and Design, 2014, 270: 325-333. doi: 10.1016/j.nucengdes.2014.02.003
    [6] JEON S, BAIK Y J, CHAN B, et al. Thermal performance of heterogeneous PCHE for supercritical CO2 energy cycle[J]. International Journal of Heat and Mass Transfer, 2016, 102: 867-876. doi: 10.1016/j.ijheatmasstransfer.2016.06.091
    [7] 刘生晖, 黄彦平, 郎雪梅, 等. 基于流动和传热关联式的印刷电路板式换热器的几何设计[J]. 核动力工程, 2016, 37(3): 106-109. doi: 10.13832/j.jnpe.2016.03.0106

    LIU S H, HUANG Y P, LANG X M, et al. Geometric design of printed circuit plate heat exchanger based on flow and heat transfer correlation[J]. Nuclear Power Engineering, 2016, 37(3): 106-109(in Chinese). doi: 10.13832/j.jnpe.2016.03.0106
    [8] 刘阳鹏, 徐国强, 李海旺, 等. 宽高比对微小通道空气流动换热特性影响实验[J]. 北京航空航天大学学报, 2015, 41(7): 1253-1258. doi: 10.13700/j.bh.1001-5965.2014.0524

    LIU Y P, XU G Q, LI H W, et al. Experimental study on the influence of width to height ratio on heat transfer characteristics of air flow in micro channels[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1253-1258(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0524
    [9] 潘旭, 姜未汀, 黄永帅, 等. 板式换热器结构参数优化设计[J]. 制冷技术, 2017, 37(6): 62-66. doi: 10.3969/j.issn.2095-4468.2017.06.205

    PAN X, JIANG W T, HUANG Y S, et al. Optimization design of structural parameters of plate heat exchanger[J]. Chinese Journal of Refrigeration Technology, 2017, 37(6): 62-66(in Chinese). doi: 10.3969/j.issn.2095-4468.2017.06.205
    [10] PAN X, ZHANG S, JIANG Y G, et al. Key parameters effects and design on performances of hydrogen/helium heat exchanger for SABRE[J]. International Journal of Hydrogen Energy, 2017, 42(34): 21976-21989. doi: 10.1016/j.ijhydene.2017.07.060
    [11] HOU Y Q, TANG G H. Thermal-hydraulic-structural analysis and design optimization for micron-sized printed circuit heat exchanger[J]. Journal of Thermal Science, 2019, 28(2): 252-261. doi: 10.1007/s11630-018-1062-8
    [12] YANG Y, LI H Z, YAO M Y, et al. Optimizing the size of a printed circuit heat exchanger by multi-objective genetic algorithm[J]. Applied Thermal Engineering, 2020, 167: 114811. doi: 10.1016/j.applthermaleng.2019.114811
    [13] GUNNASEGARAN P, MOHAMMED H A, SHUAIB N H, et al. The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes[J]. International Communications in Heat and Mass Transfer, 2010, 37: 1078-1086. doi: 10.1016/j.icheatmasstransfer.2010.06.014
    [14] WANG H T, CHEN Z H, GAO J G. Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks[J]. Applied Thermal Engineering, 2016, 107: 870-879. doi: 10.1016/j.applthermaleng.2016.07.039
    [15] HIRT G, THOME M. Rolling of functional metal licsurface structures[J]. CIRP Annals Manufacturing Technology, 2008, 57(1): 351-356.
    [16] HIRT G, THOME M. Large area rolling of function almetallic micro structures[J]. Production Engineering, 2007, 1(4): 351-356. doi: 10.1007/s11740-007-0067-z
    [17] SHIMOYAMA K, YOKOYAMA S, KANEKO S, et al. Effect of grooved roll profiles on microstructure evolutions of AZ31 sheets in periodical straining rolling process[J]. Materials Science and Engineering, 2014, 611(31): 58-68.
    [18] NG M K, FAN Z Y, GAO R, et al. Characterization of electrically assisted micro-rolling for surface texturing using embedded sensor[J]. CIRP Annals Manufacturing Technology, 2014, 63(1): 269-272. doi: 10.1016/j.cirp.2014.03.021
    [19] 王传果. 板材表面微沟槽滚压成形工艺研究[D]. 长春: 吉林大学, 2016: 39-65.

    WANG C G. Research on fabrication of bionic composite materials with hierarchical structure by using ice-templating[D]. Changchun: Jilin University, 2016: 39-65(in Chinese).
    [20] 陈鹏宇, 程利东, 王春举, 等. 薄板曲面微结构电流辅助滚压成形工艺研究[J]. 塑性工程学报, 2019, 26(2): 79-84. doi: 10.3969/j.issn.1007-2012.2019.02.010

    CHEN P Y, CHENG L D, WANG C J, et al. Electrically-assisted rolling process of curved thin foil micro-features[J]. Journal of Plasticity Engineering, 2019, 26(2): 79-84(in Chinese). doi: 10.3969/j.issn.1007-2012.2019.02.010
    [21] AKHIL B, VISHWESH M, NAISHADH G, et al. Evolution of microstructure and mechanical properties of Ti6Al4V alloy by multiple passes of contrained groove pressing at elevated temperature[J]. Journal of Materials Processing Technology, 2021, 288: 116891. doi: 10.1016/j.jmatprotec.2020.116891
    [22] 连之伟, 孙德兴. 热质交换原理与设计[M]. 3版. 北京: 中国建筑工业出版社, 2011: 190-250.

    LIAN Z W, SUN D X. Principle and design of heat and mass exchange[M]. 3rd ed. Beijing: China Construction Industry Press, 2011: 190-250(in Chinese).
    [23] SHAH R K. Compact heat exchanger surface selection methods[C]//International Heat Transfer Conference, 1978: 193-199.
    [24] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 100-160.

    YANG S M, TAO W Q. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006: 100-160(in Chinese).
    [25] TAHAMI V F, ASL Z A. Numerical and experimental investigation of T-shape fillet welding of AISI 304 stainless steel plates[J]. Materials and Design, 2013, 47: 615-623. doi: 10.1016/j.matdes.2012.12.064
  • 加载中
图(22) / 表(6)
计量
  • 文章访问数:  416
  • HTML全文浏览量:  96
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-24
  • 录用日期:  2021-05-28
  • 网络出版日期:  2021-06-15
  • 整期出版日期:  2022-10-20

目录

    /

    返回文章
    返回
    常见问答