留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环肋翅片管相变传热特性及分形优化

王玮琦 邢玉明 郑文远 郝兆龙

王玮琦, 邢玉明, 郑文远, 等 . 环肋翅片管相变传热特性及分形优化[J]. 北京航空航天大学学报, 2022, 48(12): 2520-2528. doi: 10.13700/j.bh.1001-5965.2021.0140
引用本文: 王玮琦, 邢玉明, 郑文远, 等 . 环肋翅片管相变传热特性及分形优化[J]. 北京航空航天大学学报, 2022, 48(12): 2520-2528. doi: 10.13700/j.bh.1001-5965.2021.0140
WANG Weiqi, XING Yuming, ZHENG Wenyuan, et al. Phase change heat transfer characteristics and fractal optimization of radial plate fin tube[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2520-2528. doi: 10.13700/j.bh.1001-5965.2021.0140(in Chinese)
Citation: WANG Weiqi, XING Yuming, ZHENG Wenyuan, et al. Phase change heat transfer characteristics and fractal optimization of radial plate fin tube[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2520-2528. doi: 10.13700/j.bh.1001-5965.2021.0140(in Chinese)

环肋翅片管相变传热特性及分形优化

doi: 10.13700/j.bh.1001-5965.2021.0140
基金项目: 

航空科学基金 20172851018

详细信息
    通讯作者:

    郝兆龙, E-mail: haozhaolong@buaa.edu.cn

  • 中图分类号: TK124

Phase change heat transfer characteristics and fractal optimization of radial plate fin tube

Funds: 

Aeronautical Science Foundation of China 20172851018

More Information
  • 摘要:

    基于管壳式相变换热器,通过数值模拟方法研究了35号石蜡在矩形环肋翅片管外的融化传热特性,建立肋片单元三维模型研究热流体温度、肋片高度参数对传热过程的影响,并探究了分形结构翅片的优化传热性能。结果表明:矩形环肋翅片管外相变融化过程分为传热速率差异明显的3段,适用于不同功率需求;提高热流体入口温度和相变材料温差近似等比增强总传热功率;肋片高度由10 cm分别提高至12.5 cm、15 cm时,总融化时间分别缩短42.89%、71.96%,增强传热,但功率重量比降低;分形结构优化翅片总融化时间缩短41.95%,功率提高,为相变翅片管的优化设计提供参考。

     

  • 图 1  实验装置

    Figure 1.  Experimental device

    图 2  变工况热流体出口温度

    Figure 2.  Outlet temperature of hot fluid under different working conditions

    图 3  数值模拟的几何模型

    Figure 3.  Geometric layout of simulated model

    图 4  矩形翅片单元网格

    Figure 4.  Rectangular fin cell grid

    图 5  实验结果与数值模拟对比

    Figure 5.  Comparison of experimental results and numerical simulation

    图 6  网格无关性分析

    Figure 6.  Grid independence analysis

    图 7  相变过程液相率云图

    Figure 7.  Melting process of phase change reflected by liquid phase rate of PCM

    图 8  肋片单元相变材料速率云图

    Figure 8.  Velocity cloud diagram of PCM in fin unit

    图 9  70 ℃、75 ℃、80 ℃工况3阶段时间曲线

    Figure 9.  Three stages time curves of 70 ℃, 75 ℃, 80 ℃ working conditions

    图 10  10 cm、12.5 cm、15 cm肋片高度3阶段时间曲线

    Figure 10.  Three stages time curve of fins height 10 cm, 12.5 cm, 15 cm

    图 11  十字分形翅片单元网格

    Figure 11.  Cross fractal fin element mesh

    图 12  翅片单元液相率随时间变化曲线

    Figure 12.  Liquid phase rate changes with time

    表  1  35号石蜡物性参数

    Table  1.   Physical properties of No. 35 paraffin

    参数 数值
    密度/(kg·m-3) 785
    潜热值/(kJ·kg-1) 175.24
    熔化温度/℃ 35~37
    导热系数/(W·(m·K)-1) 0.3
    比热容/(J·(kg·K)-1) 2 850
    黏度/(kg·(m·s)-1) 0.000 365
    热膨胀系数/K-1 0.000 308 5
    下载: 导出CSV
  • [1] MAZHAR A R, SHUKLA A, LIU S L. Numerical analysis of rectangular fins in a PCM for low-grade heat harnessing[J]. International Journal of Thermal Sciences, 2020, 152: 106306. doi: 10.1016/j.ijthermalsci.2020.106306
    [2] MILLS A, FARID M, SELMAN J R, et al. Thermal conductivity enhancement of phase change materials using a graphite matrix[J]. Applied Thermal Engineering, 2006, 26(14-15): 1652-1661. doi: 10.1016/j.applthermaleng.2005.11.022
    [3] SHAIKH S, LAFDI K. Effect of multiple phase change materials (PCMs) slab configurations on thermal energy storage[J]. Energy Conversion and Management, 2006, 47(15-16): 2103-2117. doi: 10.1016/j.enconman.2005.12.012
    [4] TAO Y B, HE Y L. A review of phase change material and performance enhancement method for latent heat storage system[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 245-259. doi: 10.1016/j.rser.2018.05.028
    [5] 赵亮, 邢玉明, 吕倩, 等. 纳米复合相变材料熔化过程数值模拟[J]. 北京航空航天大学学报, 2018, 44(9): 1860-1868. doi: 10.13700/j.bh.1001-5965.2017.0712

    ZHAO L, XING Y M, LYU Q, et al. Numerical simulation of melting process of nanoparticle-enhanced phase change materials[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1860-1868(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0712
    [6] 赵亮, 邢玉明, 刘鑫, 等. 基于硬脂酸复合相变材料的被动热沉性能[J]. 北京航空航天大学学报, 2019, 45(5): 970-979. doi: 10.13700/j.bh.1001-5965.2018.0513

    ZHAO L, XING Y M, LIU X, et al. Performance of a passive heat sink using stearic acid based composite as phase change material[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 970-979(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0513
    [7] JUN F K, HAMADA Y, MOROZUMI Y, et al. Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes: Experiments and modeling[J]. International Journal of Heat and Mass Transfer, 2003, 46(23): 4513-4525. doi: 10.1016/S0017-9310(03)00290-4
    [8] GVREL B. Thermal performance evaluation for solidification process of latent heat thermal energy storage in a corrugated plate heat exchanger[J]. Applied Thermal Engineering, 2020, 174: 115312. doi: 10.1016/j.applthermaleng.2020.115312
    [9] 尹点. 板片式相变储能换热器的数值模拟及其实验研究[D]. 长沙: 中南林业科技大学, 2017: 17-39.

    YIN D. A numerical simulation and experimental investigation of a plate-type phase change energy storage heat exchanger[D]. Changsha: Central South University of Forestry & Technology, 2017: 17-39(in Chinese).
    [10] 董琼. 中低温相变材料的储热结构分析与数值模拟[D]. 武汉: 武汉理工大学, 2014: 20-59.

    DONG Q. Structural analysis and numerical simulation of thermal storage equipment on mid-low temperature phase change material[D]. Wuhan: Wuhan University of Technology, 2014: 20-59(in Chinese).
    [11] ERMIS K, EREK A, DINCER I. Heat transfer analysis of phase change process in a finned-tube thermal energy storage system using artificial neural network[J]. International Journal of Heat and Mass Transfer, 2007, 50(15-16): 3163-3175. doi: 10.1016/j.ijheatmasstransfer.2006.12.017
    [12] HOSSEINZADEH K, MOGHADDAM M A E, ASADI A, et al. Effect of internal fins along with hybrid nano-particles on solid process in star shape triplex latent heat thermal energy storage system by numerical simulation[J]. Renewable Energy, 2020, 154: 497-507. doi: 10.1016/j.renene.2020.03.054
    [13] ALIZADEH M, HOSSEINZADEH K, SHAHAVI M H, et al. Solidification acceleration in a triplex-tube latent heat thermal energy storage system using V-shaped fin and nano-enhanced phase change material[J]. Applied Thermal Engineering, 2019, 163: 168-173.
    [14] KHAN Z, KHAN Z A. An experimental investigation of discharge/solidification cycle of paraffin in novel shell and tube with longitudinal fins based latent heat storage system[J]. Energy Conversion and Management, 2017, 154: 157-167. doi: 10.1016/j.enconman.2017.10.051
    [15] LIU S, PENG H, HU Z W, et al. Solidification performance of a latent heat storage unit with innovative longitudinal triangular fins[J]. International Journal of Heat and Mass Transfer, 2019, 138: 667-676. doi: 10.1016/j.ijheatmasstransfer.2019.04.121
    [16] 欧阳梅. 针翅管式相变蓄热换热性能的数值模拟[D]. 重庆: 重庆大学, 2009: 22-34.

    OUYANG M. Numerical simulation on heat transfer performance of pin-finned tube phase change heat storage unit[D]. Chongqing: Chongqing University, 2009: 22-34(in Chinese).
    [17] LI D, YANG C X, YANG H. Experimental and numerical study of a tube-fin cool storage heat exchanger[J]. Applied Thermal Engineering, 2019, 149: 712-722. doi: 10.1016/j.applthermaleng.2018.12.024
    [18] 徐灏. 分形结构换热器中PCM熔化传热特性研究[D]. 苏州: 苏州科技大学, 2019: 12-21.

    XU H. Study on heat transfer characteristics of PCM melting in a fractal heat exchanger[D]. Suzhou: Suzhou University of Science and Technology, 2019: 12-21(in Chinese).
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  327
  • HTML全文浏览量:  117
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 录用日期:  2021-05-14
  • 网络出版日期:  2021-07-01
  • 整期出版日期:  2022-12-20

目录

    /

    返回文章
    返回
    常见问答