留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间站支持多任务动态时隙分配研究

胡圣波 孟新 卞春江

胡圣波, 孟新, 卞春江. 空间站支持多任务动态时隙分配研究[J]. 空间科学学报, 2013, 33(1): 63-71. doi: 10.11728/cjss2013.01.063
引用本文: 胡圣波, 孟新, 卞春江. 空间站支持多任务动态时隙分配研究[J]. 空间科学学报, 2013, 33(1): 63-71. doi: 10.11728/cjss2013.01.063
Hu Shengbo, Meng Xin, Bian Chunjiang. Research on dynamic slots allocation supporting multi-missions for space station[J]. Chinese Journal of Space Science, 2013, 33(1): 63-71. doi: 10.11728/cjss2013.01.063
Citation: Hu Shengbo, Meng Xin, Bian Chunjiang. Research on dynamic slots allocation supporting multi-missions for space station[J]. Chinese Journal of Space Science, 2013, 33(1): 63-71. doi: 10.11728/cjss2013.01.063

空间站支持多任务动态时隙分配研究

doi: 10.11728/cjss2013.01.063
基金项目: 载人航天工程预研项目(030104)
详细信息
  • 中图分类号: V443.1

Research on dynamic slots allocation supporting multi-missions for space station

  • 摘要: 为高效、灵活利用有限的空间信道资源, 提高空间站运营模式的动态性, 采用具有QoS (Quality-of-Service)保证的空间站支持多任务动态时隙分配十分重要. 根据空间站多任务特点, 提出一种基于IP的空间站通信网络架构. 根据探测任务的不同QoS等级, 重点研究了多任务动态时隙分配方法, 提出了一种基于预留的具有QoS保证的按需时隙分配方法. 基于NS2和STK进行仿真, 并得出如下结论: 空间站经中继卫星到地面的数据传输时延在0.23~0.35s; 空间站到地面的端到端传输时延受激活的有效载荷或航天器数目影响, 激活的有效载荷或航天器数越少, 端到端的时延越小.

     

  • [1] Wood L, Ivancic W, Hodgson D. Using internet nodes and routers onboard satellites[J]. Int. J. Satell. Commun. Netw., 2007, 25(2):195-216
    [2] Edwards C D, Depaula R. Key telecommunications technologies for increasing data return for future Mars exploration[J]. Acta Astron., 2007, 61(1):131-138
    [3] Hogie K, Criscuolo E, Parise R. Using standard internet protocols and applications in space[J]. Comp. Networks, 2005, 47(5):603-650
    [4] Blott J, Wells S, Eves J. The STRV-1 microsatellite schemes: Exploiting the geosynchronous transfer orbit[J]. Acta Astron., 1997, 41(4):481-491
    [5] Jackson C, Smithies C, Sweeting M. NASA IP demonstration in-orbit via UoSAT-12 minisatellite[C]//Proceedings of the 52nd International Astronautical Congress. Toulouse: International Astronautical Congress, 2001: 235-243
    [6] Curiel S, Boland L, Cooksley J. First results from the Disaster Monitoring Constellation (DMC)[C]//Proceedings of the 4th IAA Symposium on Small Satellites for Earth Observation. Berlin: International Academy of Astronautics, 2003: 1302-1318
    [7] Cisco. Cisco Internet in Orbit and Mobile Router in Space[EB/OL][2010]. http://www.informationweek.com/ news/government/enterprise-apps/226000020
    [8] Hu Shengbo, Meng Xin, Jiang Lizheng, et al. Link layer protocol sensing for deep space exploration network[J]. Comp. Eng., 2009, 35(5):79-81. In Chinese (胡圣波, 孟新, 蒋立正, 等. 深空探测网络中的链路层协议感知[J]. 计算机工程, 2009, 35(5):79-81)
    [9] Hadjitheodosiou M, Chen Y. Communication support for future Earth science space missions[J]. Comp. Network, 2004, 46(3):321-342
    [10] Bhasin K, Hayden J. Space internet architectures and technologies for NASA enterprises[C]//Proceedings of Aerospace Conference. Big Sky: Institute of Electrical and Electronics Engineers, 2001: 931-941
    [11] Hu S. A novel split-connection mechanism based on satellite transport protocol[C]//Proceedings of the 5th International Conference on Wireless communications, networking and mobile computing. Beijing: Institute of Electrical and Electronics Engineers, 2009. 1-4
    [12] Aracil J, Morato D, Magana E. IP traffic prediction and equivalent bandwidth for DAMA TDMA protocols[C]//Proceedings of Personal, Indoor and Mobile Radio Communications. Beijing: Institute of Electrical and Electronics Engineers, 2003. 2514-2518
  • 加载中
计量
  • 文章访问数:  2159
  • HTML全文浏览量:  59
  • PDF下载量:  1034
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-28
  • 修回日期:  2012-10-19
  • 刊出日期:  2013-01-15

目录

    /

    返回文章
    返回