留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于三体系统平动点轨道的环日全景任务轨道设计

蒋卓乐 王亚敏 张永合

蒋卓乐, 王亚敏, 张永合. 基于三体系统平动点轨道的环日全景任务轨道设计[J]. 空间科学学报, 2022, 42(5): 1012-1019. doi: 10.11728/cjss2022.05.210830094
引用本文: 蒋卓乐, 王亚敏, 张永合. 基于三体系统平动点轨道的环日全景任务轨道设计[J]. 空间科学学报, 2022, 42(5): 1012-1019. doi: 10.11728/cjss2022.05.210830094
JIANG Zhuole, WANG Yamin, ZHANG Yonghe. Trajectory Design of Solar Ring Mission Based on Libration Point Trajectory of Three-body System (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 1012-1019 doi: 10.11728/cjss2022.05.210830094
Citation: JIANG Zhuole, WANG Yamin, ZHANG Yonghe. Trajectory Design of Solar Ring Mission Based on Libration Point Trajectory of Three-body System (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 1012-1019 doi: 10.11728/cjss2022.05.210830094

基于三体系统平动点轨道的环日全景任务轨道设计

doi: 10.11728/cjss2022.05.210830094
详细信息
    作者简介:

    蒋卓乐:E-mail:jiangzl@microsate.com

    通讯作者:

    张永合,E-mail:zhangyh@microsate.com

  • 中图分类号: V412

Trajectory Design of Solar Ring Mission Based on Libration Point Trajectory of Three-body System

  • 摘要: 在空间开展太阳观测是研究太阳活动周、太阳爆发、极端天气等事件起源的重要手段。环日全景探测计划是为实现从黄道面360°全方位观察太阳行星际空间而提出的。本文针对环日全景探测计划,构建了基于三体系统平动点低能量轨道的环日全景轨道部署方法。该方法以日–地L1/L2点Halo轨道幅值及Halo轨道离轨点为变量,以转移轨道飞行时间、入轨机动大小为评价指标,基于三体系统不变流形构建环日全景的转移轨道,并开展轨道优化设计。采用等高线图对设计变量及任务成本进行全局分析。仿真计算表明,轨道部署无法同时满足飞行时间最短与入轨机动最小的要求。设计了轨道机动约束条件下的最优飞行时间解,并给出了基于长三甲运载火箭的一箭双星发射及入轨方案。

     

  • 图  1  从L2点出发的不稳定不变流形

    Figure  1.  Unstable invariant manifolds from L2

    图  2  环日全景四星观测构型

    Figure  2.  Observation configuration of Solar Ring mission

    图  3  基于不变流形的环日全景部署轨道优化设计方法

    Figure  3.  Flowchart of the design method for Solar Ring mission trajectory based on invariant manifolds

    图  4  Halo轨道周期30等分

    Figure  4.  30 equal division of the Halo orbit

    图  5  L1不变流形105°相位

    Figure  5.  Invariant manifolds of L1 for 105° deployment

    图  6  L2不变流形105°相位

    Figure  6.  Invariant manifolds of L1 for 105° deployment

    图  7  从L1点出发的转移时间等高线

    Figure  7.  Contour map of transfer time for L1 departure

    图  8  从L2点出发的转移时间等高线

    Figure  8.  Contour map of transfer time for L2 departure

    图  9  从L1点出发的速度增量等高线

    Figure  9.  Contour map of phasing maneuver for L1 departure

    图  10  从L2点出发的速度增量等高线

    Figure  10.  Contour map of phasing maneuver for L2 departure

    图  11  轨道机动≤0.75 km·s–1区域的飞行时间等高线

    Figure  11.  Contour map of flight time corresponding to phasing maneuver less than 0.75 km·s–1

    图  12  日地旋转坐标系中的最优飞行轨道

    Figure  12.  Optimal transfer trajectories with constrained phasing maneuver in the Sun-Earth rotation system

    表  1  本文方案与文献[9]方案对比

    Table  1.   Contrast between the scheme of this paper and the scheme of Ref. [9]

    文献[9]方案本文方案
    运载火箭 长三甲 长三甲
    发射方式 一箭双星 一箭双星
    发射质量/kg 1375 1450
    运载余量/kg 0 170
    四星质量/kg A/C星500(余量40)
    B/D星875(余量43)
    640(含50 kg余量)
    640(含50 kg余量)
    航天器干重/kg 460 460
    部署完成时间/a 6.50 6.38
    下载: 导出CSV
  • [1] FARQUHAR R W. Lunar communications with libration-point satellites[J]. Journal of Spacecraft and Rockets, 1967, 4(10): 1383-1384 doi: 10.2514/3.29095
    [2] FARQUHAR R W, MUHONEN D P, NEWMAN C R, et al. Trajectories and orbital maneuvers for the first libration-point satellite[J]. Journal of Guidance and Control, 1980, 3(6): 549-554 doi: 10.2514/3.56034
    [3] DUNHAM D W, FARQUHAR R W. Libration Point Missions, 1978–2002[M]. Singapore: World Scientific, 2003
    [4] 魏海燕, 范全林, 时蓬. 欧美发射太阳轨道探测器推动抵近太阳观测[J]. 空间科学学报, 2020, 40(2): 147-150

    WEI H Y, FAN Q L, SHI P. Europe and the United States launch solar orbiters for the Sun observation[J]. Chinese Journal of Space Science, 2020, 40(2): 147-150
    [5] CASE A W, KASPER J C, STEVENS M L, et al. The solar probe cup on the Parker solar probe[J]. The Astrophysical Journal Supplement Series, 2020, 246(2): 43 doi: 10.3847/1538-4365/ab5a7b
    [6] 季海生, 汪毓明, 汪景琇. 太阳的立体观测[J]. 中国科学: 物理学 力学 天文学, 2019, 49(5): 059605

    JI Haisheng, WANG Yuming, WANG Jingxiu. Stereoscopic observations of the Sun[J]. Scientia Sinica-Physica, Mechanica & Astronomica, 2019, 49(5): 059605
    [7] 郑建华, SPORT任务论证组. 太阳风太阳极轨成像仪任务概念设计[C]//中国空间科学学会第七次学术年会会议手册及文集. 大连: 中国空间科学学会, 2009: 32-32

    Zheng J H, SPORT Project Demonstration Group. Solar wind solar polar orbit imager task concept design[C]// Proceedings of the 7 th Annual Conference of the Chinese society of space research. Dalian: Chinese society of space research, 2009: 32-32
    [8] WANG Y M, JI H S, WANG Y M, et al. Concept of the solar ring mission: an overview[J]. Science China Technological Sciences, 2020, 63(9): 1699-1713 doi: 10.1007/s11431-020-1603-2
    [9] WANG Y M, CHEN X, WANG P C, et al. Concept of the Solar Ring mission: preliminary design and mission profile[J]. Science China Technological Sciences, 2021, 64(1): 131-138 doi: 10.1007/s11431-020-1612-y
    [10] GÓMEZ G, JORBA A, MASDEMONT J, et al. Study of the transfer from the Earth to a halo orbit around the equilibrium point L1[J]. Celestial Mechanics and Dynamical Astronomy, 1993, 56(4): 541-562 doi: 10.1007/BF00696185
    [11] KULUMANI S, LEE T. Systematic design of optimal low-thrust transfers for the three-body problem[J]. The Journal of the Astronautical Sciences, 2019, 66(1): 1-31 doi: 10.1007/s40295-018-00139-y
    [12] ZENG H, ZHANG J R. Design of impulsive Earth-Moon Halo transfers: lunar proximity and direct options[J]. Astrophysics and Space Science, 2016, 361(10): 328 doi: 10.1007/s10509-016-2888-8
    [13] LEI H L, XU B. Resonance transition periodic orbits in the circular restricted three-body problem[J]. Astrophysics and Space Science, 2018, 363(4): 70 doi: 10.1007/s10509-018-3290-5
    [14] KATO M, SASAKI S, TANAKA K, et al. The Japanese lunar mission SELENE: science goals and present status[J]. Advances in Space Research, 2008, 42(2): 294-300 doi: 10.1016/j.asr.2007.03.049
    [15] LO M W, WILLIAMS B G, BOLLMAN W E, et al. Genesis mission design[J]. The Journal of the Astronautical Sciences, 2001, 49(1): 169-184 doi: 10.1007/BF03546342
    [16] 孟林智, 黄江川, 叶培建, 等. 嫦娥二号卫星多目标多任务设计与经验[J]. 中国科学: 技术科学, 2013, 43(6): 585-595

    Meng L Z, HUANG C J, YE J P, et al. Multi-objectives and multi-missions design and experience of Chang'E-2 satellite[J]. Scientia Sinica: Technologica, 2013, 43(6): 585-595
    [17] SZEBEHELY V. Theory of Orbits: the Restricted Problem of Three Bodies[M]. New York: Academic Press, 1967
    [18] RICHARDSON D L, CARY N D. A uniformly valid solution for motion about the interior libration point of the perturbed elliptic-restricted problem[C]//Proceedings of the AIAA/AAS Astrodynamics Specialists Conference. Nassau, Bahamas: AIAA/AAS, 1975: 75-021
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  209
  • HTML全文浏览量:  142
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-27
  • 录用日期:  2021-12-24
  • 修回日期:  2022-03-07
  • 网络出版日期:  2022-09-17

目录

    /

    返回文章
    返回