留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激波冲击下液滴变形破碎的黏性特征

施红辉 刘晨 熊红平 刘金宏 董若凌

施红辉, 刘晨, 熊红平, 刘金宏, 董若凌. 激波冲击下液滴变形破碎的黏性特征[J]. 航空动力学报, 2019, 34(9): 1962-1970. doi: 10.13224/j.cnki.jasp.2019.09.013
引用本文: 施红辉, 刘晨, 熊红平, 刘金宏, 董若凌. 激波冲击下液滴变形破碎的黏性特征[J]. 航空动力学报, 2019, 34(9): 1962-1970. doi: 10.13224/j.cnki.jasp.2019.09.013
Viscosity characteristics of droplet deformation and breakup under shock wave[J]. Journal of Aerospace Power, 2019, 34(9): 1962-1970. doi: 10.13224/j.cnki.jasp.2019.09.013
Citation: Viscosity characteristics of droplet deformation and breakup under shock wave[J]. Journal of Aerospace Power, 2019, 34(9): 1962-1970. doi: 10.13224/j.cnki.jasp.2019.09.013

激波冲击下液滴变形破碎的黏性特征

doi: 10.13224/j.cnki.jasp.2019.09.013
基金项目: 国家自然科学基金(11772309); 浙江省基础公益研究计划项目(LGG19A020002);中国工程物理研究院创新发展基金(CX2019004); 装备预研基金(6142A03180304)

Viscosity characteristics of droplet deformation and breakup under shock wave

  • 摘要: 为了获得不同黏度的液滴在高速气流中变形破碎的形态特征图像,定量分析黏性对变形破碎过程的影响,使用高速相机直接拍摄法在水平激波管中实验研究了液滴的变形破碎过程,测量了液滴迎风面位移、横向变形宽度、破碎时间等特征参数。所得结果表明:液滴的黏度较低时,液滴尾部形成的尾迹形状为细长的尖锥形,当液滴的黏度较高时,尾迹形状呈现波纹状,随着黏度的逐渐增大,液滴的尾迹更加复杂且紊乱;由于波后气流的作用,液滴迎风面发生变形失稳并演变出“尖钉”结构;黏性对液滴变形破碎过程起阻碍抑制作用;随着液滴黏度的增加,Rayleigh-Taylor(RT)不稳定性发展速率减缓,“尖钉”的数量先增加后减小。

     

  • [1] 王振国,梁剑寒,丁猛,等.高超声速飞行器动力系统研究进展[J].力学进展,2009,39(6):716-739.WANG Zhenguo,LIANG Jianhan,DING Meng,et al.A review on hypersonic airbreathing propulsion system[J].Advances in Mechanics,2009,39(6):716-739.(in Chinese)
    [2] LANE W.Shatter of drops in stream of air[J].Industrial and Engineering Chemistry,1951,43(6):1312-1317.
    [3] ENGEL O G.Fragmentation of water drops in the zone behind an air shock[J].Journal of Research of the National Bureau of Standards,1958,60(3):245-280.
    [4] RANGER A A,NICHOLLS J A.Aerodynamics shattering of liquid drops[J].AIAA Journal,1969,7(2):285-290.
    [5] WIERZBA A,TAKAYAMA K.Experimental investigation of aero dynamic breakup of liquid drops[J].AIAA Journal,1988,26(11):1329-1335.
    [6] HINZE J O.Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes[J].AIChE Journal,1955,1(3):289-295.
    [7] HSIANG L P,FAETH G.Near-limit drop deformation and second ary breakup[J].International Journal of Multiphase Flow,1992,18(5):635-652.
    [8] HSIANG L P,FAETH G.Drop properties after secondary breakup[J].International Journal of Multiphase Flow,1993,19(5):721-735.
    [9] HSIANG L P,FAETH G.Drop deformation and breakup due to shock wave and steady disturbances[J].International Journal of Multiphase Flow,1995,21(4):545-560.
    [10] JOSEPH D D,BELANGER J,BEAVERS G S.Breakup of a liquid suddenly exposed to a high-speed airstream[J].International Journal of Multiphase Flow,1999,25(6/7):1263-1303.
    [11] BEAVERS G S,JOSEPH D D,FUNADA T.Rayleigh-Taylor instability of viscoelastic drops at high weber numbers[J].Journal of Fluid Mechanics,2002,453(6):109-132.
    [12] THEOFANOUS T G,LI G J.On the physics of aerobreakup[J].Physics of Fluid,2008,20(5):2599-2604.
    [13] THEOFANOUS T G.Aerobreakup of Newtonian and viscoelastic liquids[J].Annual Review of Fluid Mechanics,2011,43:661-690.
    [14] THEOFANOUS T G,MITKIN V V,NG C L,et al.The physics of aerobreakup:Ⅱ viscous liquids[J].Physics of Fluid,2012,24(2):022104.1-022104.39.
    [15] 楼建锋,洪滔,朱建士.液滴在气体介质中剪切破碎的数值模拟研究[J].计算力学学报,2011,28(2):210-213.LOU Jianfeng,HONG Tao,ZHU Jianshi.Numerical study on shear ring breakup of liquid droplet in gas medium[J].Chinese Journal of Computational Mechanics,2011,28(2):210-213.(in Chinese)
    [16] 王超,吴宇,施红辉,等.液滴在激波冲击下的破裂过程[J].爆炸与冲击,2016,36(1):129-134.WANG Chao,WU Yu,SHI Honghui,et al.Breakup process of drop let under the impact of a shock wave[J].Explosion and Shock Waves,2016,36(1):129-134.(in Chinese)
    [17] GUILDENBECHER D R,LOPEZ-RIVERA C,SOJKA P E.Secondary atomization[J].Experiments in Fluids,2009,46:371-402.
  • 加载中
计量
  • 文章访问数:  629
  • HTML浏览量:  3
  • PDF量:  578
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-22
  • 刊出日期:  2019-09-28

目录

    /

    返回文章
    返回