留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于TEC的空间站末端回路温控系统建模及其热力学性能分析

王俊强 高利军 李运泽

王俊强, 高利军, 李运泽. 基于TEC的空间站末端回路温控系统建模及其热力学性能分析[J]. 航空动力学报, 2019, 34(7): 1483-1492. doi: 10.13224/j.cnki.jasp.2019.07.009
引用本文: 王俊强, 高利军, 李运泽. 基于TEC的空间站末端回路温控系统建模及其热力学性能分析[J]. 航空动力学报, 2019, 34(7): 1483-1492. doi: 10.13224/j.cnki.jasp.2019.07.009
Modeling and thermodynamic performance analysis of thermal control system based on terminal circuit with TEC in space station[J]. Journal of Aerospace Power, 2019, 34(7): 1483-1492. doi: 10.13224/j.cnki.jasp.2019.07.009
Citation: Modeling and thermodynamic performance analysis of thermal control system based on terminal circuit with TEC in space station[J]. Journal of Aerospace Power, 2019, 34(7): 1483-1492. doi: 10.13224/j.cnki.jasp.2019.07.009

基于TEC的空间站末端回路温控系统建模及其热力学性能分析

doi: 10.13224/j.cnki.jasp.2019.07.009
基金项目: 国家自然科学基金(50506003)

Modeling and thermodynamic performance analysis of thermal control system based on terminal circuit with TEC in space station

  • 摘要: 针对空间站中间回路温度波动过大,高温时导致科学载荷工作温度超出允许范围的问题,设计了一种基于热电制冷器(TEC)的末端单向流体回路温控系统。该系统包含一个TEC温控模块,当中间回路温度过高,末端回路冷却功率不足时,该模块可提供额外的制冷量,降低流入冷板的工质温度,形成针对科学载荷的相对低温区域,恢复回路的冷却能力。分别建立了温控系统数学模型与数值仿真模型,并完成了热负载扰动、中间回路温度扰动、末端回路流量扰动和并联支路热扰动等4种扰动对系统热力学特性影响的仿真分析,验证了TEC模块的温控性能。结果表明:在科学载荷发热功率增加30%、中间回路的温度升高5K、末端回路流量减小至0.0015kg/s等多种工况下,所设计的温控系统能够将载荷温度控制在1K以内,实现科学载荷精确温控。

     

  • [1] SCHAEFER D,KING R,COBB S.First materials science research facility rack capabilities and design features[R].AIAA-2001-4996,2001.
    [2] 郭文瑾,陈溶波,王俊.国际空间站及机柜有效载荷支持系统研究[C]∥第二十三届全国空间探测学术交流会.北京:中国空间科学学会,2010:1-15.
    [3] 廖小刚,王岩松,宋尧.2017年国外载人航天发展综述[J].载人航天,2018,24(2):279-284.LIAO Xiaogang,WANG Yansong,SONG Yao.Review of human spaceflight development abroad in 2017[J].Manned Spaceflight,2018,24(2):279-284.(in Chinese)
    [4] 韩海鹰,姜军.抽屉式标准机柜换热性能仿真及设计[J].宇航学报,2009,30(1):332-337.HAN Haiying,JIANG Jun.The simulation of heat exchange performance and design of drawer standard chassis[J].Journal of Astronautics,2009,30(1):332-337.(in Chinese)
    [5] 戚发轫.载人航天器技术[M].北京:国防工业出版社,2003.
    [6] HANG Q,YE H.A comparative study of thermal control systems using a liquid or gas working medium[J].Energy Procedia,2017,142:2323-2328.
    [7] 巩萌萌,王瑾,李运泽,等.基于蜡式自驱动温控阀的在轨卫星热控方法分析[J].航空动力学报,2015,30(9):2271-2277.GONG Mengmeng,WANG Jin,LI Yunze,et al.Analysis on thermal control method of satellite in orbit based on self-driven thermostatic valve with sensitive wax[J].Journal of Aerospace Power,2015,30(9):2271-2277.(in Chinese)
    [8] 于喜奎,毛羽丰.高超声速飞机热管理系统控制模型构建与仿真[J].航空动力学报,2018,33(3):741-751.YU Xikui,MAO Yufeng.Research and simulation of hypersonic aircraft thermal management system and its control mode[J].Journal of Aerospace Power,2018,33(3):741-751.(in Chinese)
    [9] VACCANEO P,GOTTERO M.The thermal environmental control (TEC) of the fluid science laboratory (FSL):a combined (water/air) thermal design solution for a columbus active rack[C]∥Proceedings of 31st International Conference on Environmental Systems.Orlando,US:SAE International,2001:1-12.
    [10] 黄家荣,范宇峰,禹颂耕,等.神舟七号飞船单相热控流体回路在轨性能评价[J].航天器工程,2009,18(4):37-43.HUANG Jiarong,FAN Yufeng,YU Songgeng,et al.On-orbit performance evaluation of single-phase fluid loop system for Shenzhou-7 spaceship[J].Spacecraft Engineering,2009,18(4):37-43.(in Chinese)
    [11] 徐向华,程雪涛,梁新刚.载人航天器主动热控制系统流体回路的优化设计[J].宇航学报,2011,32(10):2285-2293.XU Xianghua,CHENG Xuetao,LIANG Xingang.Design and optimization for fluid loops of active thermal control system in manned spacecraft[J].Journal of Astronautics,2011,32(10):2285-2293.(in Chinese)
    [12] 范含林.载人航天器热管理技术发展综述[J].航天器工程,2007,16(1):28-32.FAN Hanlin.Manned spacecraft thermal management technologies development overview[J].Spacecraft Engineering,2007,16(1):28-32.(in Chinese)
    [13] 靳健,何振辉,吕树申,等.空间站耦合式热管理系统性能分析[J].载人航天,2012,18(1):60-67.JIN Jian,HE Zhenhui,L Shushen,et al.Performance analysis of coupled thermal control system of space station[J].Manned Spaceflight,2012,18(1):60-67.(in Chinese)
    [14] ZHOU B,CHENG X T,LIANG X G.Conditional extremum optimization analyses and calculation of the active thermal control system mass of manned spacecraft[J].Applied Thermal Engineering,2013,59(1/2):639-647.
    [15] WANG J X,LI Y Z,ZHANG H S,et al.A highly self-adaptive cold plate for the single-phase mechanically pumped fluid loop for spacecraft thermal management[J].Energy Conversion and Management,2016,111:57-66.
    [16] HE Wei,ZHANG Gan,ZHANG Xingxing,et al.Recent development and application of thermoelectric generator and cooler[J].Applied Energy,2015,143:1-25.
    [17] ENESCU D,VIRJOGHE E O.A review on thermoelectric cooling parameters and performance[J].Renewable and Sustainable Energy Reviews,2014,38:903-916.
    [18] 王镇锐,张兴斌,温世喆,等.结合TEC 的泵驱两相温控系统的空间应用[J].宇航学报,2018,39(10):1176-1184.WANG Zhenrui,ZHANG Xingbin,WEN Shizhe,et al.Space applications of pumped two-phase temperature control system combined with TEC[J].Journal of Astronautics,2018,39(10):1176-1184.(in Chinese)
    [19] 丛山,张大宇,常明超,等.基于半导体制冷的星载CCD测试用低温环境装置设计[J].航天器环境工程,2019,36(1):95-102.CONG Shan,ZHANG Dayu,CHANG Mingchao,et al.Design of a low-temperature equipment for spaceborne CCD test based on semiconductor refrigeration[J].Spacecraft Environment Engineering,2019,36(1):95-102.(in Chinese)
    [20] 刘东晓,李运泽,李运华.纳卫星等效空间热沉的PWM控制及其在地面模拟试验中的应用研究[J].机械工程学报,2010,46(16):148-155.LIU Dongxiao,LI Yunze,LI Yunhua.PWM control and application research on ground simulation experiment of equivalent space heat sink for nano-satellite[J].Journal of Mechanical Engineering,2010,46(16):148-155.(in Chinese)
    [21] LI Y Z,LEE K M.Thermohydraulic dynamics and fuzzy coordination control of a microchannel cooling network for space electronics[J].IEEE Transactions on Industrial Electronics,2011,58(2):700-708.
    [22] LI Y Z,LEE K M,WANG J.Analysis and control of equivalent physical simulator for nanosatellite space radiator[J].IEEE/ASME Transactions on Mechatronics,2009,15(1):79-87.
  • 加载中
计量
  • 文章访问数:  621
  • HTML浏览量:  3
  • PDF量:  649
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-15
  • 刊出日期:  2019-07-28

目录

    /

    返回文章
    返回