留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单头部模型燃烧室燃烧组织及NOx排放

王晶 张漫 张弛 王建臣

王晶, 张漫, 张弛, 等. 单头部模型燃烧室燃烧组织及NOx排放[J]. 航空动力学报, 2023, 38(1):94-103 doi: 10.13224/j.cnki.jasp.20220525
引用本文: 王晶, 张漫, 张弛, 等. 单头部模型燃烧室燃烧组织及NOx排放[J]. 航空动力学报, 2023, 38(1):94-103 doi: 10.13224/j.cnki.jasp.20220525
WANG Jing, ZHANG Man, ZHANG Chi, et al. Combustion organization and NOx emission in a single sector model combustor[J]. Journal of Aerospace Power, 2023, 38(1):94-103 doi: 10.13224/j.cnki.jasp.20220525
Citation: WANG Jing, ZHANG Man, ZHANG Chi, et al. Combustion organization and NOx emission in a single sector model combustor[J]. Journal of Aerospace Power, 2023, 38(1):94-103 doi: 10.13224/j.cnki.jasp.20220525

单头部模型燃烧室燃烧组织及NOx排放

doi: 10.13224/j.cnki.jasp.20220525
基金项目: 国家自然科学基金(U2141221,52076136); 国家科技重大专项(2019-Ⅲ-0002-0045, 2017-Ⅲ-0004-0028)
详细信息
    作者简介:

    王晶(1991-),女,工程师,硕士,主要从事民用航空发动机低排放燃烧技术研究

    通讯作者:

    张漫(1983-),男,研究员级高级工程师,博士,主要从事民用航空发动机低排放燃烧技术研究。E-mail:zm2001er@163.com

  • 中图分类号: V231.1

Combustion organization and NOx emission in a single sector model combustor

  • 摘要:

    采用光学诊断与三维数值模拟结合的方式,研究了中心分级贫油预混预蒸发模型燃烧室燃烧组织与NOx生成特征。试验测量了模型燃烧室流速、燃油、OH和NO组分浓度分布。通过与试验结果对比,采用基于雷诺平均Navier-Stokes方程的方法对流场的预测误差为13.9%,喷雾张角预测误差为6.0%,预测的OH和NO组分分布特征与试验测量结果基本一致。数值结果表明,在单头部模型燃烧室中,主、预燃级火焰以弱耦合的方式组织燃烧,且大部分NO在预燃级高温区域生成。燃油分级比的变化(0.15~0.30)不影响燃烧室流动与火焰分布特征,但对燃烧室出口NOx生成量有一定影响,NOx生成量随着分级比增大而减少。

     

  • 图 1  燃烧室头部示意图(单位:mm)

    Figure 1.  Schematic of combustor dome (unit:mm)

    图 2  光学测试系统示意图[12]

    Figure 2.  Schematic of optical test system[12]

    图 3  单头部燃烧室光学火焰筒

    Figure 3.  Optical liner of single sector combustor

    图 4  单头部模型燃烧室计算域

    Figure 4.  Computational domain of single sector model combustor

    图 5  单头部模型燃烧室网格

    Figure 5.  Grids of single sector model combustor

    图 6  RANS数值模拟和试验的速度分布

    Figure 6.  Velocity distribution comparison between RANS simulation and experiment

    图 7  RANS数值模拟和试验的燃油分布

    Figure 7.  Droplets distribution comparison between RANS simulation and experiment

    图 8  RANS数值模拟和试验的组分分布

    Figure 8.  Species distribution comparison between RANS simulation and experiment

    图 9  不同分级比的温度分布

    Figure 9.  Temperature distribution with different staging ratios

    图 10  不同分级比的当量比

    Figure 10.  Equivalent ratio with different staging ratios

    图 11  不同分级比的OH质量分数分布

    Figure 11.  OH mass fraction distribution with different staging ratios

    图 12  不同分级比的NO质量分数分布

    Figure 12.  NO mass fraction distribution with different staging ratios

    图 13  Ie,NOx随分级比的变化

    Figure 13.  Ie,NOx variation with staging ratios

    表  1  质量流量分配

    Table  1.   Mass flow distribution

    空气流道实测有效开孔面积/mm2占比/%
    预燃级 166.611.2
    主燃级、级间冷却通道、
    防回火孔
    1158.477.8
    端壁冷却通道163.911.0
    下载: 导出CSV

    表  2  数值模拟工况条件

    Table  2.   Operating conditions for numerical simulation

    工况分级比Tin/K pin/MPa $ {\dot m_{\text{a}}} $/(kg/s)$ {R_{{\text{fa}}}} $
    10.155000.50.360.03
    20.205000.50.360.03
    30.255000.50.360.03
    40.305000.50.360.03
    下载: 导出CSV
  • [1] 张弛,林宇震,徐华胜,等. 民用航空发动机低排放燃烧室技术发展现状及水平[J]. 航空学报,2014,35(2): 332-350.

    ZHANG Chi,LIN Yuzhen,XU Huasheng,et al. Development status and level of low emissions combustor technologies for civil aero-engine[J]. Acta Aeronautica et Astronautica Sinica,2014,35(2): 332-350. (in Chinese)
    [2] FOUST M J, THOMSEN D, STICKLES R, et al. Development of the GE aviation low emissions TAPS combustor for next generation aircraft engines[R]. AIAA-2012-0936, 2012.
    [3] LAZIK W, DOERR T, BAKE S, et al. Development of lean-burn low-NOx combustion technology at Rolls-Royce Deutschland[R]. ASME GT2008-51115, 2008.
    [4] ZHANG M, WU H, WANG H. Numerical prediction of NOx emission and exit temperature pattern in a model staged lean premixed prevaporized combustor[R]. ASME GT2013-95235, 2013.
    [5] 秦皓,丁志磊,李海涛,等. LESS燃烧室非定常旋流流动[J]. 航空动力学报,2015,30(7): 1566-1575.

    QIN Hao,DING Zhilei,LI Haitao,et al. Unsteady swirling flow in low emission stirred swirles combustor[J]. Journal of Aerospace Power,2015,30(7): 1566-1575. (in Chinese)
    [6] LEFEBVRE A H. Fuel effects on gas turbine combustion-liner temperature, pattern factor, and pollutant emissions[J]. Journal of Aircraft,1984,21(11): 887-898. doi: 10.2514/3.45059
    [7] WANG Z C,LIN Y Z,WANG J C,et al. Experimental study on NOx emission correlation of fuel staged combustion in a LPP combustor at high pressure based on NO-chemiluminescence[J]. Chinese Journal of Aeronautics,2020,33(2): 550-560. doi: 10.1016/j.cja.2019.09.004
    [8] 何沛,邓向阳,王雄辉,等. 低排放燃烧室单头部和全环试验及排放预测研究[J]. 推进技术,2021,42(5): 1059-1069.

    HE Pei,DENG Xiangyang,WANG Xionghui,et al. Emission test and prediction investigation for low emission single cup and annular combustor[J]. Journal of Propulsion Technology,2021,42(5): 1059-1069. (in Chinese)
    [9] PAUL S C,PAUL M C,PAUL S C. LES modelling of nitric oxide (NO) formation in a propane-air turbulent reacting flame[J]. American Journal of Fluid Dynamics,2014,4(2): 69-78.
    [10] 颜应文,赵坚行,张靖周,等. 大涡模拟模型环形燃烧室污染特性[J]. 航空动力学报,2008,23(7): 1161-1167.

    YAN Yingwen,ZHAO Jianxing,ZHANG Jingzhou,et al. Large eddy simulation of pollution formation[J]. Journal of Aerospace Power,2008,23(7): 1161-1167. (in Chinese)
    [11] ZHANG Man,FU Zhenbai,LIN Yuzhen,et al. CFD study of NOx emissions in a model commercial aircraft engine combustor[J]. Chinese Journal of Aeronautics,2012,25(6): 854-863. doi: 10.1016/S1000-9361(11)60455-X
    [12] WANG B,ZHANG C,LIN Y Z. Influence of main swirler vane angle on the ignition performance of TeLESS-Ⅱ combustor[J]. Journal of Engineering for Gas Turbines and Power,2017,139(1): 011501.1-011501.8.
    [13] LEFEBVRE A H. Atomization and sprays[M]. New York, US: Hemishpere Publishing Corporation, 1989.
    [14] KUNDU K P, PENKO P F, VAVOVERBEBE T J. A practical mechanism for computing combustion in gas turbine engines[R]. AIAA 99-2218, 1999.
    [15] HANSON R K, SALIMIAN S. Survey of rate constants in H/N/O systems[M]. New York, US: Combustion Chemistry, 1984.
    [16] MEIER W,WEIGAND P,DUAN X R,et al. Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame[J]. Combust Flame,2007,150(1/2): 2-26. doi: 10.1016/j.combustflame.2007.04.002
    [17] FIALA T, SATTELMAYER T. On the use of OH* radiation as a marker for the heat release in high-pressure hydrogen-oxygen liquid rocket combustion[R]. AIAA-2013-3780, 2013.
    [18] DASCH C J. One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered back projection methods[J]. Applied Opticst,1992,31(8): 1146-1152. doi: 10.1364/AO.31.001146
    [19] 林宇震,彭云晖,刘高恩. 分级/预混合预蒸发贫油燃烧低污染方案NOx排放初步研究[J]. 航空动力学报,2003,18(4): 492-497. doi: 10.3969/j.issn.1000-8055.2003.04.007

    LIN Yuzhen,PENG Yunhui,LIU Gaoen. A preliminary study of NOx emission of staging/premixed and prevaporized lean combustion low emission combustor scheme[J]. Journal of Aerospace Power,2003,18(4): 492-497. (in Chinese) doi: 10.3969/j.issn.1000-8055.2003.04.007
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  222
  • HTML浏览量:  116
  • PDF量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-20
  • 网络出版日期:  2022-12-08

目录

    /

    返回文章
    返回