留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微通道热沉对流传热理论模型及实验

翟玉玲 夏国栋 蒋静 李云飞

翟玉玲, 夏国栋, 蒋静, 李云飞. 微通道热沉对流传热理论模型及实验[J]. 航空动力学报, 2015, 30(9): 2108-2114. doi: 10.13224/j.cnki.jasp.2015.09.008
引用本文: 翟玉玲, 夏国栋, 蒋静, 李云飞. 微通道热沉对流传热理论模型及实验[J]. 航空动力学报, 2015, 30(9): 2108-2114. doi: 10.13224/j.cnki.jasp.2015.09.008
ZHAI Yu-ling, XIA Guo-dong, JIANG Jing, LI Yun-fei. Theoretical model and experiment of convective heat transfer in microchannel heat sinks[J]. Journal of Aerospace Power, 2015, 30(9): 2108-2114. doi: 10.13224/j.cnki.jasp.2015.09.008
Citation: ZHAI Yu-ling, XIA Guo-dong, JIANG Jing, LI Yun-fei. Theoretical model and experiment of convective heat transfer in microchannel heat sinks[J]. Journal of Aerospace Power, 2015, 30(9): 2108-2114. doi: 10.13224/j.cnki.jasp.2015.09.008

微通道热沉对流传热理论模型及实验

doi: 10.13224/j.cnki.jasp.2015.09.008
基金项目: 

国家重点基础研究发展计划(2011CB710704)

北京工业大学博士生创新奖学金

北京市自然科学基金(3142004)

国家自然科学基金(51176002)

详细信息
    作者简介:

    翟玉玲(1986-),女,广西钦州人,博士生,主要从事微通道强化传热研究.

  • 中图分类号: V231.1;TK124

Theoretical model and experiment of convective heat transfer in microchannel heat sinks

  • 摘要: 用理论及实验相结合的方法研究了微通道热沉流动与传热特性.首先,总结并提出了微通道热沉对流传热的理论模型;然后,实验测量并计算了微通道热沉的压降及努塞尔数,其理论值与实验值吻合较好,平均误差在10%左右;最后,分析了不同雷诺数及通道宽高比时的导热热阻、对流热阻及电容热阻占总热阻份额的大小.结果表明:对流热阻是影响微通道热沉传热性能的重要因素,当雷诺数为985,通道宽高比为1时,对流热阻占总热阻90%左右;而在雷诺数较小时,导热热阻占总热阻的份额小于10%,可以忽略不计;电容热阻占总热阻的份额随着雷诺数及通道宽高比的增大而降低.

     

  • [1] Ndao S,Peles Y,Jensen M K.Multi-objective thermal design optimization and comparative analysis of electronics cooling technologies[J].International Journal of Heat and Mass Transfer,2009,52(19/20):4317-4326.
    [2] Karathanassis I K,Papanicolaou E,Belessiotis V,et al.Multi-objective design optimization of a micro heat sink for concentrating photovoltaic/thermal (CPVT) systems using a genetic algorithm[J].Applied Thermal Engineering,2013,59(1/2):733-744.
    [3] Rosa P,Karayiannis T G,Collins M W S.Single-phase heat transfer in microchannels:the imporantant of scaling effects[J].Applied Thermal Engineering,2009,29(17/18):3447-3468.
    [4] Hao P F,Yao Z H,He F,et al.Experimental investigation of water flow in smooth and rough silicon microchannels[J].Journal of Micromechanics and Microengineering,2006,16(7):1397-1402.
    [5] Lee P S,Garimella S V.Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios[J].International Journal of Heat and Mass Transfer,2006,49(17/18):3060-3067.
    [6] Mital M.Semi-analytical investigation of electronics cooling using developing nanofluid flow in rectangular microchannels[J].Applied Thermal Engineering,2013,52(2):321-327.
    [7] Xu J L,Song Y X,Zhang W,et al.Numerical simulations of interrupted and conventional microchannel heat sinks[J].International Journal of Heat and Mass Transfer,2008,51(25/26):5906-5917.
    [8] Kandlikar S,Garimella S,Li D,et al.Heat transfer and fluid flow in minichannels and microchannels[M].Amsterdam,Holland:Elsevier,2006.
    [9] Chen R Y.Flow in the entrance region at low Reynolds number[J].Journal of Fluid Engineering,1972,95(1):153-158.
    [10] Steinke M E,Kandlikar S G.Single-phase liquid friction factors in microchannels[J].International Journal of Thermal Sciences,2006,45(11):1073-1083.
    [11] Sakanova A,Yin S,Zhao J,et al.Optimization and comparison of double-layer and double-side micro-channel heat sinks with nanofluid for power electronics cooling[J].Applied Thermal Engineering,2014,65(1/2):124-134.
    [12] 杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.
    [13] 景思睿,张鸣远.流体力学[M].西安:西安交通大学出版社,2001.
    [14] Xia G D,Zhai Y L,Cui Z Z.Numerical investigation of thermal enhancement in a micro heat sink with fan-shaped reentrant cavities and internal ribs[J].Applied Thermal Engineering,2013,58(1/2):52-60.
    [15] Heyhat M M,Kowsary F,Rashidi A M,et al.Experimental investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime[J].Experimental Thermal and Fluid Science,2013,44:483-489.
    [16] Chai L,Xia G D,Zhou M Z,et al.Heat transfer enhancement in microchannel heat sinks with periodic expansion-constriction cross-section[J].International Journal of Heat and Mass Transfer,2013,62:741-751.
    [17] Xia G D,Zhai Y L,Cui Z Z.Characteristics of entropy generation and heat transfer in a microchannel with fan-shaped reentrant cavities and internal ribs[J].Science China Technological Sciences,2013,56(7):1629-1635.
    [18] Wong K C,Muezzin F N A.Heat transfer of a parallel flow two-layered microchannel heat sink[J].International Communications in Heat and Mass Transfer,2013,49:136-140.
    [19] Maranzana G,Perry I,Maillet D.Mini-and micro-channels:influence of axial conduction in the walls[J].International Journal of Heat and Mass Transfer,2004,47(17/18):3993-4004.
  • 加载中
计量
  • 文章访问数:  911
  • HTML浏览量:  5
  • PDF量:  706
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-20
  • 刊出日期:  2015-09-28

目录

    /

    返回文章
    返回