留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子涂层热疲劳失效模式及失效机理研究

魏洪亮 杨晓光 齐红宇 韩增祥

魏洪亮, 杨晓光, 齐红宇, 韩增祥. 等离子涂层热疲劳失效模式及失效机理研究[J]. 航空动力学报, 2008, 23(2): 270-275.
引用本文: 魏洪亮, 杨晓光, 齐红宇, 韩增祥. 等离子涂层热疲劳失效模式及失效机理研究[J]. 航空动力学报, 2008, 23(2): 270-275.
WEI Hong-liang, YANG Xiao-guang, QI Hong-yu, HAN Zeng-xiang. Study of failure mode and failure mechanisms on thermal fatigue of plasma sprayed thermal barrier coatings[J]. Journal of Aerospace Power, 2008, 23(2): 270-275.
Citation: WEI Hong-liang, YANG Xiao-guang, QI Hong-yu, HAN Zeng-xiang. Study of failure mode and failure mechanisms on thermal fatigue of plasma sprayed thermal barrier coatings[J]. Journal of Aerospace Power, 2008, 23(2): 270-275.

等离子涂层热疲劳失效模式及失效机理研究

Study of failure mode and failure mechanisms on thermal fatigue of plasma sprayed thermal barrier coatings

  • 摘要: 开展了等离子涂层构件热疲劳实验研究,对失效过程及失效模式进行考察,分析了对失效起主导作用的应力分量.针对陶瓷层材料引入粘塑性本构模型,对涂层的热疲劳进行数值模拟研究.分析表明,氧化层厚度为2 μm时,陶瓷层波峰位置容易萌生Ⅰ型横向裂纹,界面中部偏上位置容易萌生Ⅱ型横向裂纹;氧化层厚度为8 μm时,陶瓷层内部法向应力主导横向裂纹的扩展;不同厚度的氧化层内部将形成较高的应变能密度.给出了等离子涂层内部裂纹形成过程及机理.

     

  • [1] Rabiei A,Evans A G.Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings[J].Acta Mater.,2000,48:3963-3976.
    [2] Busso E P,Lin J,Sakurai S.et al.A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system.Part Ⅱ:Life prediction model[J].Acta materialia,2001,49:1529-1536.
    [3] Evans A G,Mumm D R,Hutchinson J W,et al.Mechanisms controlling the durability of thermal barrier coatings[J].Progress in Materials Science,2001,46:505-553.
    [4] Evans A G,He M Y,Hutchinson J W.Effect of interface undulations on the thermal fatigue of thin films and scales on metal substrates[J].Acta Mater.,1997,45:3543-3554.
    [5] Karlsson A M,Hutchinson J W,Evans A G.A fundamental model of cyclic instabilities in thermal barrier systems[J].Journal of the Mechanics and Physics of Solids,2002,50:1565-1589.
    [6] Karlsson A M,Hutchinson J W,Evans A G.The displacement of the thermally grown oxide in thermal barrier systems upon temperature cycling[J].Materials Science and Engineering,2003,A351:244-257.
    [7] Freborg A M,Ferguson B L,Brindley W J,et al.Modeling oxidation induced stresses in thermal barrier coatings[J].Mater.Sci.Eng.A,1998,A245(3):182-1190.
    [8] Aktaa J,Sfar K,Munz D.Assessment of TBC systems failure mechanisms using a fracture mechanics approach[J].Acta Materialia,2005,53:4399-4413.
    [9] Janosik L A,Duffy S F.A viscoplastic constitutive theory for monolithic ceramics-I[J].ASME J.Eng.Gas Turbines Power,1998,120:155-161.
    [10] Xie Wangang,Walker K P,Jordan E H,et al.Implementation of a viscoplastic model for a plasma sprayed ceramic thermal barrier coating[J].J.Eng.Mater.Technol.,2003,125:200-207.
    [11] 耿瑞.热障涂层强度分析及寿命预测研究[D].北京:北京航空航天大学,2001.GENG Rui.Strength analysis and life prediction study on thermal barrier coatings[D].Beijing:Beijing University of Aeronautics and Astronautics,2001.(in Chinese).
    [12] Berndt C C,Miller R A.Failure analysis of plasma-sprayed thermal barrier coatings[R].NASA Technical Memorandum No.83777,1984.
  • 加载中
计量
  • 文章访问数:  1329
  • HTML浏览量:  1
  • PDF量:  437
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-01-17
  • 修回日期:  2007-03-21
  • 刊出日期:  2008-02-28

目录

    /

    返回文章
    返回