留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同钝体宽度下的驻涡燃烧室排放试验

吴泽俊 何小民 金义 宋耀宇 洪亮 薛冲

吴泽俊, 何小民, 金义, 宋耀宇, 洪亮, 薛冲. 不同钝体宽度下的驻涡燃烧室排放试验[J]. 航空动力学报, 2016, 31(1): 179-187. doi: 10.13224/j.cnki.jasp.2016.01.023
引用本文: 吴泽俊, 何小民, 金义, 宋耀宇, 洪亮, 薛冲. 不同钝体宽度下的驻涡燃烧室排放试验[J]. 航空动力学报, 2016, 31(1): 179-187. doi: 10.13224/j.cnki.jasp.2016.01.023
WU Ze-jun, HE Xiao-min, JIN Yi, SONG Yao-yu, HONG Liang, XUE Chong. Experiment on emissions of a trapped vortex combustor with different bluff body widths[J]. Journal of Aerospace Power, 2016, 31(1): 179-187. doi: 10.13224/j.cnki.jasp.2016.01.023
Citation: WU Ze-jun, HE Xiao-min, JIN Yi, SONG Yao-yu, HONG Liang, XUE Chong. Experiment on emissions of a trapped vortex combustor with different bluff body widths[J]. Journal of Aerospace Power, 2016, 31(1): 179-187. doi: 10.13224/j.cnki.jasp.2016.01.023

不同钝体宽度下的驻涡燃烧室排放试验

doi: 10.13224/j.cnki.jasp.2016.01.023
基金项目: 

江苏省普通高校研究生科研创新计划资助项目(CXLX12_0167)

详细信息
    作者简介:

    吴泽俊(1984-),男,湖北恩施人,博士生,主要从事燃烧理论与燃烧室技术研究.E-mail:wzj@nuaa.edu.cn

  • 中图分类号: V231.3

Experiment on emissions of a trapped vortex combustor with different bluff body widths

  • 摘要: 为了研究空气流量分配对驻涡燃烧室对排放特性的影响,了解对驻涡燃烧室内污染物生成的过程及其影响因素,设计了一个能够改变中心钝体宽度、仅凹腔供油的驻涡燃烧室.在常压下对该驻涡燃烧室进行了排放特性试验,进口温度保持200℃.试验中,燃烧室进口马赫数为0.15~0.3.影响排放的因素主要包括雾化质量、凹腔当量比以及与进口马赫数相关的驻留时间等.总体来说雾化质量、凹腔当量比的提高对降低CO和HC的排放是有利的,但是这会使NOx排放增加.在低凹腔当量比时,CO排放曲线变化下降比较平缓,甚至出现上升趋势,而HC排放曲线比较陡峭.这是由于HC的消耗速度比CO消耗速度快,随着凹腔当量比的增加,供油压力提高,燃油雾化粒径变小,燃油蒸发时间缩短,使HC排放快速减少,中间产物CO大量产生而来不及消耗.凹腔当量比进一步上升时,由于燃烧温度的提高,使得CO排放快速减少.在燃烧室内燃烧过程中,NOx的形成和消耗是非常复杂的过程,目前只能作一些定性的分析,而CO和HC的反应过程相对简单.通过对不同钝体槽宽下,具有相似凹腔前壁流量的工况的比较,发现CO和HC的形成主要受凹腔内工作状况影响,而NOx的形成过程更复杂,主流也对其产生着重要的影响.

     

  • [1] 林宇震,许全宏,刘高恩.燃气轮机燃烧室[M].北京:国防工业出版社,2008.
    [2] Mongia H C.Aero-thermal design and analysis of gas turbine combustion systems:current status and future direction[R].AIAA 98-3982,1998.
    [3] Sturgess G J,Zelin J,Shouse D T,et al.Emissions reduction technologies for military gas turbine engines[J].Journal of Propulsion and Power,2005,21(2):193-217.
    [4] Al-Attab K A,Zainal Z A.Design and performance of a pressurized cyclone combustor (PCC) for high and low heating value gas combustion[J].Applied Energy,2011,88(2):1084-1095.
    [5] Hwang C H,Lee S,Kim J H,et al.An experimental study on flame stability and pollutant emission in a cyclone jet hybrid combustor[J].Applied Energy,2009,86(7/8):1154-1161.
    [6] Gupta A K.Gas turbine combustion:prospects and challenges[J].Energy Conversion and Management,1997,38(10/11/12/13):1311-1318.
    [7] Van Erp C A,Richman M H.Technical challenges associated with the development of advanced combustion systems[R].Lisbon,Portugal:Symposium on Gas Turbine Engine Combustion,Emissions and Alternative Fuels,1998.
    [8] Abbe N T,Randall R F,Howard L W.Atmospheric effects of aviation:first report of the subsonic assessment project[R].NASA-RP1385,1996.
    [9] International Civil Aviation Organization.International standards and recommended practices annex 16 to the convention on international civil aviation environmental protection volume Ⅱ:aircraft engine emissions[M].3nd ed.Montreal,Canada:International Civil Avation Organization,1993.
    [10] International Civil Avation Organization.Report of the independent experts to CAEP8 on the second NOx review & long term technology goals[R].Committee on Aviation Environmented protection,CAEP/8-WP/10,2010.
    [11] Roquemore W M,Shouse D,Burrus D,et al.Trapped vortex combustor concept for gas turbine engines[R].AIAA-2001-0483,2001.
    [12] Hsu K Y,Goss L P,Trump D D.Performance of a trapped-vortex combustor[R].AIAA 95-0810,1995.
    [13] Hsu K Y,Goss L P,Roquemore W M.Characteristics of a trapped-vortex combustor[J].Journal of Propulsion and Power,1998,14(1):57-65.
    [14] Shouse D T.Trapped vortex combustion technology[EB/OL].[2013-12-05] http://soliton.ae.gatech.edu/ people/lsankar/MITE_Workshop_2000/presentations/Shouse.pdf.
    [15] Straub D L,Casleton K H,Lewis R E,et al.Assessment of rich-burn,quick-mix,lean-burn trapped vortex combustor for stationary gas turbines[J].Journal of Engineering for Gas Turbines and Power,2005,127(1):36-41.
    [16] Bucher J,Edmonds R G,Steele R C,et al.The development of a lean-premixed trapped vortex combustor[R].ASME Paper GT2003-38236,2003.
    [17] Edmonds R G, Steele R C,Williams J T,et al.Ultra-low NOx advanced vortex combustor[R].ASME Paper GT2006-90319, 2006.
    [18] 金义,何小民,蒋波.富油燃烧/快速淬熄/贫油燃烧(RQL)工作模式下驻涡燃烧室排放性能试验[J].航空动力学报,2011,26(5):1031-1036. JIN Yi,HE Xiaomin,JIANG Bo.Experimental study on emission performance of rich-burn quick-quench lean-burn (RQL) trapped-vortex combustor[J].Journal of Aerospace Power,2011,26(5):1031-1036.(in Chinese)
    [19] JIN Yi,HE Xiaomin,ZHANG Jinyu,et al.Experimental study on emission performance of an LPP/TVC[J].Chinese Journal of Aeronautics,2012,25(3):335-341.
    [20] 蒋波.RQL驻涡燃烧室排放性能研究[D].南京:南京航空航天大学,2010. JIANG Bo.An investigation on emmission performance of RQL trapped vortex combustor[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2010.(in Chinese)
    [21] 田中礼.LPP驻涡燃烧室排放性能研究[D].南京:南京航空航天大学,2010. TIAN Zhongli.An investigation on emission performance of LPP trapped vortex combustor[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2010.(in Chinese)
  • 加载中
计量
  • 文章访问数:  1013
  • HTML浏览量:  4
  • PDF量:  478
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-13
  • 刊出日期:  2016-01-28

目录

    /

    返回文章
    返回