留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

主动冷却薄壁结构的通道布局与形状优化

孙士平 徐德辉 刘道煌 胡政

孙士平, 徐德辉, 刘道煌, 胡政. 主动冷却薄壁结构的通道布局与形状优化[J]. 航空动力学报, 2022, 37(1): 1-10. doi: 10.13224/j.cnki.jasp.20210005
引用本文: 孙士平, 徐德辉, 刘道煌, 胡政. 主动冷却薄壁结构的通道布局与形状优化[J]. 航空动力学报, 2022, 37(1): 1-10. doi: 10.13224/j.cnki.jasp.20210005
SUN Shiping, XU Dehui, LIU Daohuang, HU Zheng. Channel layout and shape optimization of active cooling thin-walled structures[J]. Journal of Aerospace Power, 2022, 37(1): 1-10. doi: 10.13224/j.cnki.jasp.20210005
Citation: SUN Shiping, XU Dehui, LIU Daohuang, HU Zheng. Channel layout and shape optimization of active cooling thin-walled structures[J]. Journal of Aerospace Power, 2022, 37(1): 1-10. doi: 10.13224/j.cnki.jasp.20210005

主动冷却薄壁结构的通道布局与形状优化

doi: 10.13224/j.cnki.jasp.20210005
基金项目: 国家自然科学基金(11862015); 江西省自然科学基金(20192BAB206027)
详细信息
    作者简介:

    孙士平(1972-),男,教授,博士,主要从事结构优化设计等研究。

  • 中图分类号: V231.9;TG386

Channel layout and shape optimization of active cooling thin-walled structures

  • 摘要: 针对基于传统分析方法的超然冲压发动机燃烧室主动冷却设计存在通用性差、周期长问题,采取子结构法建立主动冷却通道体胞的流固热多场耦合有限元模型,在与实验对比验证有限元模型有效性基础上,分析了结构质量和质量流率不变时通道数目对换热性能的影响;采用超椭圆方程描述通道截面形状,结合Kriging响应面和多目标遗传算法,开展了最小化平均壁温、压力损失和最大应力的通道形状优化。结果表明:存在一个合适的通道数目来协调各性能指标;通道位置不影响压力损失,但通道越靠近气壁面,换热性能更好;接近矩形的通道形状综合性能表现更好。与初始方案相比,从Pareto解集中选取的一优化方案,其平均壁温最高温度分别下降4.9%和7.2%,而压力损失降低33.6 kPa,降幅达33.4%,综合性能改进明显。

     

  • [1] 肖红雨,高峰,李宁.再生冷却技术在超燃冲压发动机中的应用与发展[J].飞航导弹,2013(8):78-81.
    [2] 袁鑫,寇志海,赵国昌,等.矩形通道超临界再生冷却技术研究综述[J].飞航导弹,2017(5):18-23,42.
    [3] BUCHMANN O A,WALTERS F M.Heat transfer and fluent flow analysis of hydrogen-cooled panels and manifold systems[R].NASA CR-66925,1970.
    [4] FLIEDER W G,RICHARD C E,BUCHMANN O A.An analytical study of hydrogen cooled panels for application to hypersonic aircraft[R].NASA CR-1650,1971.
    [5] WIETING A R,DECHAUMPHAI P,BEY K S,et al.Application of integrated fluid-thermal-structural analysis methods[J].Thin-Walled Structures,1991,11(1/2):1-23.
    [6] 罗世彬,吴先宇,罗文彩,等.机身/推进系统一体化高超声速飞行器冷却性能分析[J].弹箭与制导学报,2004,24 (1):56-62.
    [7] 杨样,张磊,张若凌,等.超燃冲压发动机燃烧室主动冷却设计研究[J].推进技术,2014,35(2):208-212.
    [8] PARRIS D K,LANDRUM D B.Effect of tube geometry on regenerative cooling performance[R].AIAA 2005-4301,2005.
    [9] SCOTTI S J,MARTIN C J,LUCAS S H.Active cooling design for scramjet engines using optimization methods[R].AIAA 88-2265,1988.
    [10] YOUN B,MILLS A F.Cooling panel optimization for the active cooling system of a hypersonic aircraft[J].Journal of Thermophysics and Heat Transfer,1995,9(1):136-143.
    [11] 牛禄,程惠尔,李明辉.高宽比和粗糙度对再生冷却通道流动的影响[J].上海交通大学报,2002,36(11):1612-1615.
    [12] 宋宏伟,纪科星,黄晨光,等.主动冷却通道热流固耦合三维数值计算及构型应力分析[C]∥第三届高超声速科技学术会议文集.江苏 无锡:中国力学学会,2010:332-342.
    [13] ZHANG Silong,FENG Yu,ZHANG Duo.Parametric numerical analysis of regenerative cooling in hydrogen fueled scramjet engines[J].International Journal of Hydrogen Energy,2016,41(25):10942-10960.
    [14] 秦昂,张登成,魏扬,等.超燃冲压发动机再生冷却结构的多目标优化设计[J].推进技术,2018,39(6):1331-1339.
    [15] 蒋劲,张若凌,乐嘉陵,等.燃油冷却面板传热特性试验与计算分析研究[J].实验流体力学,2011,25(1):1-6.
    [16] 桂业伟,刘磊,代光月,等.高超声速飞行器流-热-固耦合研究现状与软件开发[J].航空学报,2017,38(7):92-110.
    [17] 中国航空材料手册编辑委员会.中国航空材料手册[M].北京:中国标准出版社,1988.
    [18] 李中洲,朱惠人,张霞.微小圆管内煤油流动研究[J].航空动力学报,2010,25(8):1728-1732.
    [19] 吴峰,王秋旺,罗来勤,等.液体火箭发动机推力室冷却通道传热优化计算[J].推进技术,2006,27(3):197-200.
    [20] 孙士平,胡坚堂,张卫红.基于超椭圆方程和序列响应面法的回转壳开孔形状优化[J].航空学报,2015,36(11):3595-3607.
  • 加载中
计量
  • 文章访问数:  301
  • HTML浏览量:  23
  • PDF量:  255
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-05
  • 刊出日期:  2022-01-28

目录

    /

    返回文章
    返回