留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速稀薄流域防热减阻概念构型气动性能

张帅

张帅. 高速稀薄流域防热减阻概念构型气动性能[J]. 航空动力学报, 2022, 37(1): 124-141. doi: 10.13224/j.cnki.jasp.20200541
引用本文: 张帅. 高速稀薄流域防热减阻概念构型气动性能[J]. 航空动力学报, 2022, 37(1): 124-141. doi: 10.13224/j.cnki.jasp.20200541
ZHANG Shuai. Conceptual configuration aerodynamic performance of heat flux and drag reduction in high speed rarefied flow[J]. Journal of Aerospace Power, 2022, 37(1): 124-141. doi: 10.13224/j.cnki.jasp.20200541
Citation: ZHANG Shuai. Conceptual configuration aerodynamic performance of heat flux and drag reduction in high speed rarefied flow[J]. Journal of Aerospace Power, 2022, 37(1): 124-141. doi: 10.13224/j.cnki.jasp.20200541

高速稀薄流域防热减阻概念构型气动性能

doi: 10.13224/j.cnki.jasp.20200541
基金项目: 国家重点研发计划(2019YFA0405304)
详细信息
    作者简介:

    张帅(1995-),男,工程师,硕士,研究方向为高速飞行器气动热力设计。

  • 中图分类号: V423.6

Conceptual configuration aerodynamic performance of heat flux and drag reduction in high speed rarefied flow

  • 摘要: 为探究高速稀薄流流域凹腔槽道的气动特性,采用直接模拟蒙特卡罗(DSMC)方法,建立了凹腔深宽比为1,槽道高度分别为0、10、20、30、40 mm以及基准高度为20 mm的唇口钝化半径为2~20 mm的凹腔槽道构型,获得了不同算例的气动热系数和气动力系数的变化情况,分析了不同槽道高度以及不同唇口钝化半径的凹腔槽道构型对气动热与气动力性能的影响。数值结果表明:稀薄流流域中凹腔槽道构型能够达到预期的防热减阻效果,较优构型(槽道高度为20 mm)的防热率与减阻率分别达到6.99%和4.44%;槽道高度越高,减阻效果越好,但防热效率降低甚至出现防热反作用;凹腔腔体内部气体由稀薄流转化为连续流,凹腔内气体压力不断振荡;唇口钝化处理可以在保证阻力系数增加不大的情况下显著降低峰值传热。

     

  • [1] HUANG Wei.A survey of drag and heat reduction in supersonic flows by a counterflowing jet and its combinations[J].Journal of Zhejiang University (Science A),2015,16(7):551-561.
    [2] WANG Zhenguo,SUN Xiwan,HUANG Wei,et al.Experimental investigation on drag and heat flux reduction in supersonic/hypersonic flows:A survey[J].Acta Astronautica,2016,129:95-110.
    [3] LI Shibin,WANG Zhenguo,HUANG Wei,et al.Analysis of flowfield characteristics for equal polygon opposing jet on different freeflow conditions[J].Acta Astronautica,2017,133:50-62.
    [4] GERDROODBARY M B,FALLAH K,POURMIRZAAGHA H.Characteristics of transverse hydrogen jet in presence of multi air jets within scramjet combustor[J].Acta Astronautica,2017,132:25-32.
    [5] ZHANG Ruirui,HUANG Wei,LI Langquan,et al.Drag and heat flux reduction induced by the pulsed counterflowing jet with different periods on a blunt body in supersonic flows[J].International Journal of Heat and Mass Transfer,2018,127:503-512.
    [6] ZHANG Ruirui,HUANG Wei,LI Yan,et al.Drag and heat flux reduction induced by the pulsed counterflowing jet with different waveforms on a blunt body in supersonic flows[J].Acta Astronautica,2019,160:635-645.
    [7] DONG Hao,DENG Fan,XIE Feng,et al.Drag reduction effect for hypersonic lifting-body vehicle with counterflowing jet[J].Transactions of Nanjing University of Aeronautics and Astronautics,2018,35(5):789-799.
    [8] RONG Yisheng.Drag reduction research in supersonic flow with opposing jet[J].Acta Astronautica,2013,91:1-7.
    [9] DASO E O,PRITCHETT V E,WANG T S,et al.The dynamics of shock dispersion and interactions in supersonic freestreams with counterflowing jets[J].AIAA Journal,2009,47(6):1313-1326.
    [10] GERDROODBARY M B,FALLAH K,POURMIRZAAGHA H.Characteristics of transverse hydrogen jet in presence of multi air jets within scramjet combustor[J].Acta Astronautica,2017,132:25-32.
    [11] GERDROODBARY M B,BISHEHSARI S,HOSSEINALIPOUR S M,et al.Transient analysis of counterflowing jet over highly blunt cone in hypersonic flow[J].Acta Astronautica,2012,73:38-48.
    [12] SATHEESH K,REDDY K,JAGADEESH G.Concentrated electrical energy deposition can reduce the wave drag around blunt bodies flying at hypersonic Mach number[J].Physical Review:B,2006,57(20):13235-13240.
    [13] GANESH A M,JOHN B.Concentrated energy addition for active drag reduction in hypersonic flow regime[J].Acta Astronautica,2018,142:221-231.
    [14] SATHEESH K,JAGADEESH G.Effect of concentrated energy deposition on the aerodynamic drag of a blunt body in hypersonic flow[J].Physics of Fluids,2007,19(3):031701.1-031701.4.
    [15] BIBIN J,VINAYAK K.Investigation of energy deposition technique for drag reduction at hypersonic speeds[J].Applied Mechanics and Materials,2013,367:222-227.
    [16] TAGUCHI S,OHNISHI N,FURUDATE M,et al.Numerical analysis of drag reduction for supersonic blunt body by pulse energy deposition[R].AIAA-2007-1235,2007.
    [17] SPERBER D,ECKEL H A,STEIMER S,et al.Objectives of laser-induced energy deposition for active flow control[J].Contributions to Plasma Physics,2012,52(7):636-643.
    [18] JOARDER R.On the mechanism of wave drag reduction by concentrated laser energy deposition in supersonic flows over a blunt body[J].Shock Waves,2018,29:487-497.
    [19] KALIMUTHU R,RATHAKRISHNAN E.Aerospike for drag reduction in hypersonic flow[R].AIAA-2008-4707,2008.
    [20] YADAV R,GUVEN U.Aerothermodynamics of a hypersonic projectile with a double-disk aerospike[J].Aeronautical Journal,2013,117(1195):913-928.
    [21] YADAV R ,VELIDI G ,GUVEN U.Aerothermodynamics of generic re-entry vehicle with a series of aerospikes at nose[J].Acta Astronautica,2014,96:1-10.
    [22] HUANG Wei,LI Langquan,YAN Li,et al.Drag and heat flux reduction mechanism of blunted cone with aerodisks[J].Acta Astronautica,2017,138:168-175.
    [23] SAHOO D,DAS S,KUMAR P,et al.Effect of spike on steady and unsteady flow over a blunt body at supersonic speed[J].Acta Astronautica,2016,128:521-533.
    [24] KULKARNI V,MENEZES V,REDDY K P J.Effectiveness of aerospike for drag reduction on a blunt cone in hypersonic flow[J].Journal of Spacecraft and Rockets,2010,47(3):542-544.
    [25] ESFEH M K,TAJALLI S M,LIU Pengfei.Evaluation of aerospike for drag reduction on a blunt nose using experimental and numerical modeling[J].Acta Astronautica,2019,160:656-671.
    [26] WYSOCKI O,SCHüLEIN E,SCHNEPF C.Experimental study on wave drag reduction at slender bodies by a self-aligning aerospike[J].Notes on Numerical Fluid Mechanics and Multidisciplinary Design,2014,124:583-590.
    [27] GERDROODBARY M B,HOSSEINALIPOUR S M.Numerical simulation of hypersonic flow over highly blunted cones with spike[J].Acta Astronautica,2010,67(1/2):180-193.
    [28] PISH F,MORADI R,EDALATPOUR A,et al.The effect of coolant injection from the tip of spike on aerodynamic heating of nose cone at supersonic flow[J].Acta Astronautica,2018,154:52-60.
    [29] MinOU,YAN Li,HUANG Wei,et al.Design exploration of combinational spike and opposing jet concept in hypersonic flows based on CFD calculation and surrogate model[J].Acta Astronautica,2018,155:287-301.
    [30] ZHANG Ruirui,DONG Minzhou,HUANG Wei,et al.Drag and heat flux reduction mechanism induced by the combinational forward-facing cavity and pulsed counterflowing jet configuration in supersonic flows[J].Acta Astronautica,2019,160:62-75.
    [31] HUANG Wei,CHEN Zheng,YAN Li,et al.Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows:A review[J].Progress in Aerospace sciences,2019,105:31-39.
    [32] HUANG Wei,YAN Li,LIU Jun,et al.Drag and heat reduction mechanism in the combinational opposing jet and acoustic cavity concept for hypersonic vehicles[J].Aerospace Science and Technology,2015,42:407-414.
    [33] HUANG Wei,LIU Jun,XIA Zhixun.Drag reduction mechanism induced by a combinational opposing jet and spike concept in supersonic flows[J].Acta Astronautica,2015,115:24-31.
    [34] HUANG Wei,JIANG Yanping,YAN Li,et al.Heat flux reduction mechanism induced by a combinational opposing jet and cavity concept in supersonic flows[J].Acta Astronautica,2016,121:164-171.
    [35] SUN Xiwan,HUANG Wei,GUO Zhenyun,et al.Multiobjective design optimization of hypersonic combinational novel cavity and opposing jet concept[J].Journal of Spacecraft and Rockets,2017,54(3):662-671.
    [36] GERDROODBARY M B.Numerical analysis on cooling performance of counterflowing jet over aerodisked blunt body[J].Shock Waves,2014,24(5):537-543.
    [37] ZHANG Ruirui,HUANG Wei,YAN Li,et al.Numerical investigation of drag and heat flux reduction mechanism of the pulsed counterflowing jet on a blunt body in supersonic flows[J].Acta Astronautica,2018,146:123-133.
    [38] HARTMANN J.On a new method for the generation of sound-waves[J].Physical Review,1922,20(6):719-727.
    [39] BURBANK P B,STALLINGS R L.Heat-transfer and pressure measurements on a flat-face cylinder at a Mach number range of 2.49 to 4.44[R].NASA-TM-X-19,1959.
    [40] YUCEIL B,DOLLING D,WILSON D.A preliminary investigation of the Helmholtz resonator concept for heat flux reduction[R].AIAA 1993-2742,1993.
    [41] SEILER F,SRULIJES J,PASTOR M G,et al.Heat fluxes inside a cavity placed at the nose of a projectile measured in a shock tunnel at Mach 4.5[C]∥Notes on Numerical Fluid Mechanics and Multidisciplinary Design.Berlin:Springer ,2007:309-316.
    [42] SARAVANAN S,JAGADEESH G,REDDY K P J.Investigation of missile-shaped body with forward-facing cavity at Mach 8[J].Journal of Spacecraft and Rockets,2009,46(3):577-591.
    [43] 张帅,方蜀州,许阳.稀薄流航天器鼻锥迎风凹腔气动力和气动热性能研究[J].推进技术,2021,42(9):2002-2010.
    [44] GUPTA A,RUFFIN S,NEWFIELD M,et al.Aerothermodynamic performance enhancement and design of sphere-cones using the artificially blunted leading edge concept[R].AIAA-1999-897,1999.
    [45] 张帅,方蜀州,郭建.头部钝化的无翼航天器气动性能研究[J].飞行力学,2020,38(6):56-62,69.
    [46] ZHANG Shuai,FANG Shuzhou,GUO Jian.Aerodynamic performance analysis of a curved-channel ABLE airfoil in supersonic continuous and hypersonic rarefied flows[R].Chengdu:the 4th International Conference on Aeronautical Materials and Aerospace Engineering,2020.
    [47] ZHANG Shuai,FANG Shuzhou,XU Yang,et al.Aerodynamic performance analyses of blunt cone with new cavity-channel conception in the hypersonic flow [R].Moscow:the 6th International Conference on Mechanical Engineering and Automation Science (ICMEAS),2020.
    [48] 方方,周璐,李志辉.航天器返回地球的气动特性综述[J].航空学报,2015,36(1):24-38.
    [49] 黄飞,程晓丽,沈清.高超声速平板近空间气动特性的计算分析研究[J].宇航学报,2009,30(3):900-907.
    [50] BIRD G A.Molecular gas dynamics and the direct simulation of gas flows[M].New York:Oxford University Press,1994.
    [51] MOSS J N,BIRD G A.Direct simulation monte carlo simulations of hypersonic flows with shock interactions[J].AIAA Journal,2005,43(12):2565-2573.
    [52] ALLEGRE J,BISCH D,LENGRAND J C.Experimental rarefied aerodynamic forces at hypersonic conditions over 70degree blunted cone[J].Journal of Spacecraft and Rockets,1997,34(6):719-723.
    [53] MüLLER-EIGNER R,KOPPENWALLNER G,FRITSCHE B.Pressure and heat flux measurement with RAFLEX Ⅱ during MIRKA re-entry[J].Aerothermodynamics for Space Vehicles,1999,426:685-694.
    [54] PITAKARNNOP J,WONGPITHAYADISAI R,PHANAKULWIJIT S.Alternative models and numerical simulations of rarefied gas flow in vacuum systems[J].Measurement,2018,126:417-420.
  • 加载中
计量
  • 文章访问数:  104
  • HTML浏览量:  9
  • PDF量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-19
  • 刊出日期:  2022-01-28

目录

    /

    返回文章
    返回