留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航天飞机主发动机高压燃料涡轮泵的故障模式

刘士杰 梁国柱

刘士杰, 梁国柱. 航天飞机主发动机高压燃料涡轮泵的故障模式[J]. 航空动力学报, 2015, 30(3): 611-626. doi: 10.13224/j.cnki.jasp.2015.03.012
引用本文: 刘士杰, 梁国柱. 航天飞机主发动机高压燃料涡轮泵的故障模式[J]. 航空动力学报, 2015, 30(3): 611-626. doi: 10.13224/j.cnki.jasp.2015.03.012
LIU Shi-jie, LIANG Guo-zhu. Failure modes of space shuttle main engine high-pressure fuel turbopump[J]. Journal of Aerospace Power, 2015, 30(3): 611-626. doi: 10.13224/j.cnki.jasp.2015.03.012
Citation: LIU Shi-jie, LIANG Guo-zhu. Failure modes of space shuttle main engine high-pressure fuel turbopump[J]. Journal of Aerospace Power, 2015, 30(3): 611-626. doi: 10.13224/j.cnki.jasp.2015.03.012

航天飞机主发动机高压燃料涡轮泵的故障模式

doi: 10.13224/j.cnki.jasp.2015.03.012
基金项目: 

国家高技术研究发展计划

详细信息
    作者简介:

    刘士杰(1985-),男,山东新泰人,博士生,主要从事液体火箭发动机可重复使用性研究.

  • 中图分类号: V434+.211

Failure modes of space shuttle main engine high-pressure fuel turbopump

  • 摘要: 对航天飞机主发动机(SSME)高压燃料涡轮泵(HPFTP)的故障模式作了归纳总结,深入分析了HPFTP关键部件故障的问题及其解决办法.研究表明:①SSME的HPFTP故障模式与一次性使用液体火箭发动机液氢涡轮泵、航空燃气涡轮的故障模式存在很大的差异;②影响HPFTP寿命的重要故障模式是涡轮叶片的断裂与热防护装置的热机械疲劳故障;涡轮叶片的断裂主要由高温蠕变效应与高速旋转离心力所引起.HPFTP启动、关机瞬态效应对涡轮叶片的影响也很严重,在涡轮叶片寿命预估时必须考虑这些因素;③HPFTP次同步振动问题是SSME HPFTP设计初期面临的一个重要故障模式,主要由轴承与泵级间密封引起的;④启动隔离密封这类HPFTP专有密封件的故障模式也是HPFTP故障模式的重要组成部分.

     

  • [1] Meisl C J.Life cycle cost considerations for launch vehicle liquid propellant rocket engine[R].AIAA 86-1408,1986.
    [2] Williams W C.Report of the SSME assessment team[R].NASA N93-21645,1993.
    [3] Sackheim R L.SSME 0523 incident investigation[R].NASA 1.2:019296,2002.
    [4] Karns J J.Space shuttle catastrophic failure frequencies final report[R].NASA-CR-25809,1993.
    [5] 朱志斌,杨尔辅,张振鹏.液体火箭发动机故障模式与影响分析[C]//中国宇航学会1998年联合推进会议论文集.烟台:中国宇航学会,1998:278-284.
    [6] Early D.SSME FMEA/CIL redundancy screen[R].NASA Report B300-0302,1999.
    [7] Clark D F.Failure mode,description and effect[R].NASA Report B300,2001.
    [8] Paster R D,Stohler S L.SSME evolution[R].AIAA 89-2618,1989.
    [9] Jue F H.Space shuttle main engine:thirty years of innovation[R].NASA-46693,2002.
    [10] Biggs R E.Space shuttle main engine the first ten years[M]//Doyle S E.History of liquid rocket engine development in the United States.Springfield:the AAS Publication,1992:69-122.
    [11] Rickman D K.ALS liquid hydrogen turbopump[R].NASA-CR194646,1993.
    [12] Van Hooser K.Space shuttle main engine relentless pursuit of improvement[R].Huntsville,AL:Marshall Space Flight Center:M11-1028,2011.
    [13] Blair J,Ryan R.Lessons learned in engineering[R].NASA/CR-216468,2011.
    [14] Rocketdyne Propulsion and Power.Space shuttle main engine orientation[EB/OL].[2012-9-10].http://large.stanford.edu/courses/2011/ph240/nguyen1/docs/SSME_PRESENTATION.pdf.
    [15] Newell J F,WKurth R E,Ho H.Composite load spectra for select space propulsion structural components[R].NASA-CR-179496,1986.
    [16] NASA Lewis Research Center.Rotordynamic instability problems in high-performance turbomachinery[R].NASA-CP-3026,1989.
    [17] Pool K V.Space shuttle main engine structural analysis and data reduction/evaluation:Volume 4 high pressure fuel turbopump inlet housing analysis[R].NASA-CR-183667,1989.
    [18] Becht D G,Hawkins L A,Scharrer J K,et al.NASA Lewis Research Center rotordynamic instability problems in high-performance turbomachinery[M].California:Lewis Research Center,1991:191-202.
    [19] 谢光军,胡海峰,秦国军,等.液体火箭发动机涡轮泵健康监控系统[J].国防科技大学学报,2005,27(3):40-44. XIE Guangjun,HU Haifeng,QIN Guojun,et al.The health monitoring system of turbopump for liquid rocket engine[J].Journal of National University of Defense Technology,2005,27(3):40-44.(in Chinese)
    [20] Cikanek H A.Space shuttle main engine failure detection[J].IEEE Control Systems Magazine,1986,6(3):13-18.
    [21] Agogino A,Tumer K.Entropy based anomaly detection applied to space shuttle main engines[R].Big Sky,MT:IEEE Aerospace Conference,2006.
    [22] Moore N R,Ebbeler D H,Newlin L E,et al.An improved approach for flight readiness certification-methodology for failure risk assessment and application examples:methodology and applications[R].NASA-CR-194499,1992.
    [23] Hale J K,Wood B K.Operational life improvement of SSME high-pressure turbopumps[J].Acta Astronautica,1987,15(12):1009-1018.
    [24] Chyu M K.A performance/loss evaluation of SSME HPFTP turbine[R].Washington DC:Alabama University Research Reports 89N21735/0,1988.
    [25] National Aeronautics and Space Administration.Liquid rocket engine turbines[R].NASA-SP-8110,1974.
    [26] Hartong A R,Rooney B D.Near-term RLV options[R].AIAA-2004-5947,2004.
    [27] Heppenheimer T A.The space shuttle decision:NASA's search for a reusable space vehicle[R].NASA/SP-4221,1999.
    [28] Furst R B.Space shuttle main engine turbopump design and development[R].AIAA 75-1301,1975.
    [29] Glover R C,Kelley B A,Tischer A E.SSME failure data review,diagnostic survey and SSME diagnostic evaluation[R].NASA-CR-178993,1986.
    [30] Cikanek H A.Characteristics of space shuttle main engine failures[R].AIAA 87-1939,1987.
    [31] Hopson G.Atlantis STS-104 space shuttle program SSME flight readiness review[R].Washington DC:Space Shuttle SR&QA Assessment,2001.
    [32] Sujata M,Madan M,Raghavendra K,et al.Identification of failure mechanisms in nickel-base superalloy turbine blades through microstructural study[J].Engineering Failure Analysis,2010,17(6):1436-1446.
    [33] Abdul-Aziz A,Thompson R L.Thermal-structural analysis of space shuttle main engine(SSME) hot section components[R].NASA-22404,1988.
    [34] Abdul-Aziz A.Structural evaluation of a space shuttle main engine (SSME) high pressure fuel turbopump turbine blade[R].NASA CR-198428,1996.
    [35] Abdul-Aziz A.Assessment of crack growth in a space shuttle main engine first-stage high pressure fuel turbopump blade[J].Finite Element in Analysis and Design,2002,39(2):1-15.
    [36] Hudson S T.Rocket engine turbine blade surface pressure distribution:experiment and components[R].AIAA-2000-3239,2002.
    [37] Hopson G.Discovery STS-103 space shuttle program SSME flight readiness review[R].Washington DC:Space Shuttle SR&QA Assessment,1999.
    [38] Davis G,Clough R.Blade tip rubbing stress prediction[R].NASA-CR-184100,1991.
    [39] Carter T J.Common failure in gas turbine blades[J].Engineering Failure Analysis,2005,12(2):237-247.
    [40] SHI Duoqi,DONG Chengli,YANG Xiaoguang.Constitutive modeling and failure mechanisms of anisotropic tensile and creep behaviors of nickel-base directionally solidified superalloy[J].Materials and Design,2013,45:663-673.
    [41] In-Hwan S,Dong-Keun L,Yongseck K,et al.Assessment of the characteristic of thermal barrier coating applied to gas turbine blade by thermo-gradient mechanical fatigue test[J].Procedia Engineering,2013,55:210-213.
    [42] Yongseok K,Dong-Keun L,In-Hwan S,et al.Microstructural analysis of TMF failure mechanism of GTD-111 applied to gas turbine blades[J].Procedia Engineering,2013,55:204-209.
    [43] Sadowski T,Golewski P.Multidisciplinary analysis of the operational temperature increase of turbine blades in combustion engines by application of the ceramic thermal barrier coatings(TBC)[J].Computational Materials Science,2011,50(4):1326-1335.
    [44] Robinson J K,Teal C A,Welch C T.Space shuttle main engine powerhead structural modeling,stress and fatigue life analysis:Volume 1 gas dynamic environment of the SSME HPFTP and HPOTP turbine[R].NASA-CR-170999,1983.
    [45] Robinson J K,Teal C A,Welch C T.Space shuttle main engine powerhead structural modeling,stress and fatigue life analysis:Volume 2 dynamics of blades and nozzles-SSME HPFTP and HPOTP[R].NASA-CR-171000,1983.
    [46] Robinson J K,Teal C A,Welch C T.Stress summary of blades and nozzles at FPL and 115% RPL loads SSME HPFTP and HPOTP blades and nozzles[R].NASA-CR-171001,1983.
    [47] Robinson J K,Teal C A,Welch C T.Summary of investigation of unshielduler events and special tests[R].NASA-CR-171002,1983.
    [48] Myers D D,Fletcher J C.Aerospace safety advisory panel[R].Washington DC:NASA 1986 annual report,1986.
    [49] Stallworth R,Wilson C,Meyers C.Compendium of fracture mechanics problems[R].NASA-TM-100393,1990.
    [50] 孙瑞杰,闫晓军.涡轮叶片榫齿部位疲劳/蠕变试验的新特点[J].航空动力学报,2007,22(3):419-424. SUN Ruijie,YAN Xiaojun.New characteristics of fatigue-creep tests on serration of turbine blade[J].Journal of Aerospace Power,2007,22(3):419-424.(in Chinese)
    [51] Dong-Keun L,In-Hwan S,Yongseck K,et al.A study on fatigue life prediction of Ni-base superalloy[J].Procedia Engineering,2013,55:631-635.
    [52] Dominic R J.Turbine blade friction damper study[R].NASA 85N22798,1985.
    [53] Muszynska A,Bently D E,Franklin W D,et al.Influence of rubbing on rotor dynamics[R].NASA-CR-183648-PT-1,1989.
    [54] Wilmer G E.Turbine blade tip and seal clearance excitation forces[R].NASA-CR-171534,1992.
    [55] Moore J H.Turbomachinery design quality checks to avoid friction induced structural failure[R].NASA-0046248,1999.
    [56] Arakere N K,Swanson G.Fretting stresses in single crystal superalloy turbine blade attachments[J].Journal of Tribology,2001,123(2):413-423.
    [57] Robinson J K.Investigation of the HPFTP first stage impeller crack[R].NASA-CR-171281,1984.
    [58] Vance J,Zeidan F,Murphy B.Machinery vibration and rotordynamics[M].Hoboken,New Jersey:Wiley & Sons,2010.
    [59] Chileds D W.SSME HPFTP interstage seals:analysis and experiments for leakage and reaction-force coefficient:part Ⅰ[R].NASA-CR-170851,1983.
    [60] Matthew C E.Solution of the subsynchronous whirl problem in the high-pressure hydrogen turbomachinery of the space shuttle main engine[R].AIAA 78-1002,1978.
    [61] Jery B,Brennen C E,Caughey T K.Impeller forces on centrifugal pump[C]//Proceedings of the Second International Pump Symposium.College Station,Texas:California Institute of Technology,1985:21-32.
    [62] Black H F,Jenssen D N.Effects of high ring seals on pump rotor vibrations[R].ASME Paper 71-WA-FE-36,1971.
    [63] Chileds D W.SSME HPFTP interstage seals:analysis and experiments for leakage and reaction-force coefficient:Part Ⅱ[R].NASA-CR-170851,1983.
    [64] Groda D R,Prabhu B S.High-pressure annular seal leakage and rotordynamics with application to turbomachinery[J].International Journal of Rotating Machinery,2002,8(6):403-411.
    [65] Hendricks R C,Steinetz B M,Braun M J.Turbomachine sealing and secondary flows:Part 1 review of sealing performance,customer,engine designer,and research issues[R].NASA/TM-211991/PT1,2004.
    [66] Darden J M,Earhart E M,Flowers G T.Comparison of the dynamic characteristics of smooth annular seals and damping seals[J].Journal of Engineering for Gas Turbines and Power,2001,123(4):857-863.
    [67] Kwanka K.Improving the stability of labyrinth gas seals[J].Journal of Engineering for Gas Turbines and Power,2001,123(2):383-388.
    [68] Childs D W,Ramsey C.Seal-rotordynamic-coefficient test results for a model SSME ATD-HPFTP turbine interstage seal with and without a swirl brake[J].Journal of Tribology,1991,113(1):198-203.
    [69] Murphy B T,Scharrer J K,Hawkins L A.The SSME HPFTP wavy interstage seal:Part Ⅱ rotor dynamic analysis[R].ASME Publication DE-VOL.18-2,1989.
    [70] Gibson H G,Thom R,Moore C,et al.History of space shuttle main engine turbopump bearing testing at the Marshall Space Flight Center[R].NASA-M10-0338,2010.
    [71] Gibson H G.SSME bearing and seal tester data compilation,analysis and reporting and refinement of the cryogenic bearing analysis mathematical model[R].NASA-CR-210139,2000.
    [72] 古乐,王黎钦,李秀娟,等.超低温氢氧泵轴承技术研究及进展[J].中国机械工程,2002,13(7):620-623. GU Le,WANG Liqin,LI Xiujuan,et al.Study and review of liquid hydrogen/oxygen turbo-pump cryogenic bearing technology[J].China Mechanical Engineering,2002,13(7):620-623.(in Chinese)
    [73] 马美玲,邓四二,梁波,等.火箭发动机低温轴承的设计[J].轴承,2006(6):10-12. MA Meiling,DENG Sier,LIANG Bo,et al.The cryogen bearing design of liquid rocket engine[J].Bearing,2006(6):10-12.(in Chinese)
    [74] Lu D,Zhao W,Lu B,et al.Static characteristics of a new hydrodynamic rolling hybrid bearing[J].Tribology International,2012,48:87-92.
    [75] Santos E N,Blanco C J C,Macedo E N,et al.Integral transform solutions for the analysis of hydrodynamic lubrication of journal bearings[J].Tribology International,2012,52:161-169.
    [76] Butner M F,Murphy B T.SSME long life bearings[R].NASA-CR-179455,1986.
    [77] Dwivedi V K,Chand S,Pandey K N.Effect of number and size of recess on the performance of hybrid:hydrostatic/hydrodynamic journal bearing[J].Procedia Engineering,2013,51:810-817.
    [78] 白长青,许庆余,张小龙.滚动轴承—火箭发动机液氢涡轮泵转子系统的动力特性分析[J].航空学报,2006,27(2):258-261. BAI Changqing,XU Qingyu,ZHANG Xiaolong.Dynamic properties analysis of ball bearing-liquid hydrogen turbopump used in rocket engine[J].Acta Aeronautica et Astronautica Sinica,2006,27(2):258-261.(in Chinese)
    [79] Meisl C J.Rocket engine vs.jet engine comparison[R].AIAA 92-3686,1992.
    [80] Breithaupt B S.Space shuttle main engine turbopump bearing assessment program[R].NASA-TM-108447,1994.
    [81] Yang Y,Yinxia L,Guang M,et al.A hybrid feature selection scheme for unsupervised learning and its application in bearing fault diagnosis[J].Expert Systems with Applications,2011,38(9):11311-11320.
    [82] Georgoulas G,Loutas T,Stylios C D,et al.Bearing fault detection based on hybrid ensemble detector and empirical mode decomposition[J].Mechanical Systems and Signal Processing,2013,41(1/2):510-525.
    [83] Elrod D A.Investigation of SSME alternate high pressure fuel turbopump lift-off seal fluid and structural dynamics interaction[R].NASA/ASEE N90-19400,1989.
    [84] Clark D F.Failure mode,description and effect:loss of containment in the pump with leakage into the turbine[R].NASA Report B300-0302,2001.
    [85] Chupp R E,Hendricks R C,Lattime S B,et al.Turbomachinery clearance control[M].Cleveland,US:NASA Glenn Research Center,2007.
    [86] Hendricks R C,Tam L T,Muszynska A.Turbomachine sealing and secondary flows:Part 2 review of rotordynamics issues in inherently unsteady flow systems with small clearance[R].NASA/TM-211991/PT2,2004.
    [87] Hopson G.Atlantis STS-106 space shuttle program SSME flight readiness review[R].Washington DC:Space Shuttle SR&QA Assessment,2000.
    [88] Keegan W B.Terrestrial environment criteria handbook for use in aerospace vehicle development[M].Alabama,US:NASA Technical Standards Program Office,2000.
    [89] Kaminski K E.Space shuttle contamination control requirements[R].Washington DC:SN-C-0005,1998.
  • 加载中
计量
  • 文章访问数:  1347
  • HTML浏览量:  10
  • PDF量:  1291
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-01
  • 刊出日期:  2015-03-28

目录

    /

    返回文章
    返回