留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桨叶翼型弯度对摆线桨悬停状态的气动性能影响

钱悦 黄典贵

钱悦, 黄典贵. 桨叶翼型弯度对摆线桨悬停状态的气动性能影响[J]. 航空动力学报, 2018, 33(6): 1500-1509. doi: 10.13224/j.cnki.jasp.2018.06.024
引用本文: 钱悦, 黄典贵. 桨叶翼型弯度对摆线桨悬停状态的气动性能影响[J]. 航空动力学报, 2018, 33(6): 1500-1509. doi: 10.13224/j.cnki.jasp.2018.06.024
Effect of blade camber on aerodynamic performance of cycloidal propeller under hovering status[J]. Journal of Aerospace Power, 2018, 33(6): 1500-1509. doi: 10.13224/j.cnki.jasp.2018.06.024
Citation: Effect of blade camber on aerodynamic performance of cycloidal propeller under hovering status[J]. Journal of Aerospace Power, 2018, 33(6): 1500-1509. doi: 10.13224/j.cnki.jasp.2018.06.024

桨叶翼型弯度对摆线桨悬停状态的气动性能影响

doi: 10.13224/j.cnki.jasp.2018.06.024
基金项目: 国家自然科学基金(51536006);上海市科委科研计划项目(17060502300);上海市科委基地建设项目(13DZ2260900)

Effect of blade camber on aerodynamic performance of cycloidal propeller under hovering status

  • 摘要: 以悬停状态下的摆线桨为研究对象,利用数值模拟方法,分别研究了桨叶相对弯度X和最大弯度位置Y对摆线桨气动性能的影响。结果表明:与桨叶为对称翼型的摆线桨相比,当桨叶具有一定弯度且最大弯度位置适中时,摆线桨气动性能得到很大的提升。当桨叶相对弯度X为4%C(C为翼型弦长)、最大弯度位置Y距离前缘40%C~50%C时,摆线桨升力和气动功耗比较低,悬停效率最高,整体气动性能更好。

     

  • [1] YUN C Y.A new vertical take-off and landing aircraft with cycloidal blades system:cyclocopter[D].Seoul:Seoul National University,2004.
    [2] BENEDICT M,RAMASAMY M,CHOPRA I,et al.Performance of a cycloidal rotor concept for micro air vehicle applications[J].Journal of the American Helicopter Society,2010,55(2):22002.1-22002.14.
    [3] JARUGUMILLI T,BENEDICT M,CHOPRA I.Experimental optimization and performance analysis of a MAV scale cycloidal rotor[R].AIAA-2011-821,2011.
    [4] 唐继伟,胡峪,宋笔锋.摆线桨气动性能研究进展[J].空气动力学学报,2013,31(5):676-684.TANG Jiwei,HU Yu,SONG Bifeng.Advances in the aerodynamics research of cycloidal propeller[J].Acta Aerodynamica Sinica,2013,31(5):676-684.(in Chinese)
    [5] 杜帆,胡峪.滚翼机滚转阶跃响应分析[J].飞行力学,2014,32(2):118-121.DU Fan,HU Yu.Analysis of roll step-input response of a cyclogyro[J].Flight Dynamics,2014,32(2):118-121.(in Chinese)
    [6] HU Yu,LIM K B,HU Wenrong.The research on the performance of cyclogyro[R].AIAA-2006-7704,2006.
    [7] ANDREWS G,SHRESTHA E,CHOPRA I.Design and fabrication of a meso-scale aircraft using a cycloidal rotor propulsion system[R].AIAA-2016-0141,2016.
    [8] HWANG I S,MIN S Y,KIM M K,et al.Multidisciplinary optimal design of cyclocopter blade system[R].AIAA-2005-2287,2005.
    [9] KIM S J,YUN C Y,KIM D,et al.Design and performance tests of cycloidal propulsion systems[R].AIAA-2003-1786,2003.
    [10] PARSONS E S.Investigation and characterization of a cycloidal rotor for application to a micro-air vehicle[D].Washington DC:University of Maryland,2005.
    [11] SIROHI J,PARSONS E,CHOPRA I.Hover performance of a cycloidal rotor for a micro air vehicle[J].Journal of the American Helicopter Society,2007,52(3):263-279.
    [12] LEGER J A,PSCOA J C,XISTO C M.Analytical modeling of a cyclorotor in hovering state[J].Proceedings of the Institution of Mechanical Engineers:Part G Journal of Aerospace Engineering,2015,229(12):2163-2177.
    [13] IOSILEVSKII G,LEVY Y.Experimental and numerical study of cyclogiro aerodynamics[J].AIAA Journal,2006,44(12):2866-2870.
    [14] IOSILEVSKII G,LEVY Y.Aerodynamics of the cyclogiro[R].AIAA-2003-3473,2003.
    [15] BENEDICT M,JARUGUMILLI T,LAKSHMINARAYAN V,et al.Effect of flow curvature on forward flight performance of a micro-air-vehicle-scale cycloidal-rotor[J].AIAA Journal,2014,52(6):1159-1169.
    [16] BENEDICT M,JARUGUMILLI T,CHOPRA I.Effect of rotor geometry and blade kinematics on cycloidal rotor hover performance[J].Journal of Aircraft,2013,50(5):1340-1352.
    [17] BENEDICT M,RAMASAMY M,CHOPRA I.Improving the aerodynamic performance of micro-air-vehicle-scale cycloidal rotor:an experimental approach[J].Journal of Aircraft,2010,47(4):1117-1125.
    [18] SEIFERT J.A review of the Magnus effect in aeronautics[J].Progress in Aerospace Sciences,2012,55(5):17-45.
    [19] MCNABBM L.Development of a cycloidal propulsion computer model and comparison with experiment[D].Starkville,US:Mississippi State University,2001.
    [20] JAMESON A.An assessment of dual-time stepping,time spectral and artificial compressibility based numerical algorithms for unsteady flow with applications to flapping wings[R].AIAA-2009-4273,2009.
    [21] 杨金广,吴虎.双方程κ-ω SST湍流模型的显式耦合求解及其在叶轮机械中的应用[J].航空学报,2014,35(1):116-124.YANG Jinguang,WU Hu.Explicit coupled solution of two-equation κ-ω SST turbulence model and its application in turbomachinery flow simulation[J].Acta Aeronautica et Astronautica Sinica,2014,35(1):116-124.(in Chinese)
  • 加载中
计量
  • 文章访问数:  563
  • HTML浏览量:  2
  • PDF量:  448
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-27
  • 刊出日期:  2018-06-28

目录

    /

    返回文章
    返回