留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超燃冲压发动机的HIFiRE项目飞行试验研究进展

邓帆 尘军 谢峰 刘辉

邓帆, 尘军, 谢峰, 刘辉. 基于超燃冲压发动机的HIFiRE项目飞行试验研究进展[J]. 航空动力学报, 2018, 33(3): 683-695. doi: 10.13224/j.cnki.jasp.2018.03.022
引用本文: 邓帆, 尘军, 谢峰, 刘辉. 基于超燃冲压发动机的HIFiRE项目飞行试验研究进展[J]. 航空动力学报, 2018, 33(3): 683-695. doi: 10.13224/j.cnki.jasp.2018.03.022
Research progress on flight tests of HIFiRE project based on scramjet[J]. Journal of Aerospace Power, 2018, 33(3): 683-695. doi: 10.13224/j.cnki.jasp.2018.03.022
Citation: Research progress on flight tests of HIFiRE project based on scramjet[J]. Journal of Aerospace Power, 2018, 33(3): 683-695. doi: 10.13224/j.cnki.jasp.2018.03.022

基于超燃冲压发动机的HIFiRE项目飞行试验研究进展

doi: 10.13224/j.cnki.jasp.2018.03.022
基金项目: 留学基金委航天国际化创新型人才培养项目(留金法[2015]5138)

Research progress on flight tests of HIFiRE project based on scramjet

  • 摘要: 飞行器在临近空间内的气动特性及发动机性能一直是各国高超声速项目研究的重点,为探索边界层转捩、激波边界层相互作用以及气动加热效应,美澳牵头于2006年联合启动了HIFiRE项目,采用探空火箭发射进行重点技术验证的模式开展了系列创新性研究。项目重点关注20~38km空域,4~8速域飞行马赫数,试验方案通过单项验证、系统集成的思路逐步深入,将一体化设计的乘波体从无动力滑翔推进到有动力巡航,最终完成带超燃冲压发动机高升阻比飞行器的总体性能测试。研究结果表明:①试验飞行器的边界层转捩高度在35~25km;②乘波体飞行器在飞行马赫数为7时最大升阻比为5.6;③超燃冲压发动机的飞行试验中,在86.2kPa的恒定动压下,飞行马赫数从5.5加速到8.5,试验中发动机实现了从亚燃到超燃的模态转换。

     

  • [1] SCHMISSEUR J D.Hypersonics into the 21st century:a perspective on AFOSR-sponsored research in aerothermodynamics[R].AIAA-2013-2606,2013.
    [2] BOWCUTT K,PAULL A,DOLVIN D,et al.HIFiRE:an international collaboration to advance the science and technology of hypersonic flight[R].Leiden,The Netherlands:28th International Congress of the Aeronautical Sciences,2012.
    [3] KIMMEL R L,ADAMCZAK D.HIFiRE-1 preliminary aerothermodynamic experiments[R].AIAA-2011-3413,2011.
    [4] KIMMEL R L,ADAMCZAK D,PAULL A,et al.HIFiRE-1 ascent-phase boundary-layer transition[J].Journal of Spacecraft and Rockets,2015,52(1):217-230.
    [5] ADAMCZAK D,KIMMEL R L,PAULL A,et al.HIFiRE-1 flight trajectory estimation and initial experimental results[R].AIAA-2011-2358,2011.
    [6] LI F,CHOUDHARI M,CHANG C L,et al.Transition analysis for the HIFiRE-1 flight experiment[R].AIAA-2011-3414,2011.
    [7] WILLEMS S,GLHAN A,JULIANO T J,et al.Laminar to turbulent transition on the HIFiRE-1 cone at Mach 7 and high angle of attack[R].AIAA-2014-0428,2014.
    [8] STANFIELD S A,KIMMEL R L,ADAMCZAK D,et al.Boundary-layer transition experiment during reentry of HIFiRE-1[J].Journal of Spacecraft and Rockets,2015,52(3):637-649.
    [9] KIMMEL R L,ADAMCZAK D,BORG M,et al.HIFiRE-1 and HIFiRE-5 test results[R].AFRL-RQ-WP-TR-2014-0038,2014.
    [10] LI F,CHOUDHARI M,CHANG C L,et al.Stability analysis for HIFiRE experiments[R].AIAA-2012-2961,2012.
    [11] KIMMEL R L,PRABHU D.HIFiRE-1 turbulent shock boundary layer interaction:flight data and computations[R].AIAA-2015-2639,2015.
    [12] LHLE S,BHRK H,FUCHS U,et al.Three-dimensional thermal analysis of the HIFiRE-5 ceramic fin[R].AIAA-2012-5920,2012.
    [13] PAREDES P,THEOFILIS V.Spatial linear global instability analysis of the HIFiRE-5 elliptic cone model flow[R].AIAA-2013-2880,2013.
    [14] KIMMEL R,ADAMCZAK D,BERGER K,et al.HIFiRE-5 flight vehicle design[R].AIAA-2010-4985,2010.
    [15] JULIANO T J,SCHNEIDER S P.Instability and transition on the HIFiRE-5 in a Mach-6 quiet tunnel[R].AIAA-2010-5004,2010.
    [16] KIMMEL R L,BORG M P,JEWELL J S,et al.HIFiRE-5 boundary layer transition and HIFiRE-1 shock boundary layer interaction[R].AFRL-RQ-WP-TR-2015-0151,2015.
    [17] KIMMEL R L,ADAMCZAK D,JULIANO T J.HIFiRE-5 flight test preliminary results[R].AIAA-2013-0377,2013.
    [18] JEWELL J S,MILLER J H,KIMMEL R L.Correlation of HIFiRE-5 flight data with computed pressure and heat transfer[R].AIAA-2015-2319,2015.
    [19] PAREDES P,THEOFILIS V.Traveling global instabilities on the HIFiRE-5 elliptic cone model flow[R].AIAA-2014-0075,2014.
    [20] PAREDES P,THEOFILIS V.Centerline instabilities on the hypersonic international flight research experimentation HIFiRE-5 elliptic cone model[J].Journal of Fluids and Structures,2015,53:36-49.
    [21] PRIME Z,DOOLAN C,CAZZOLATO B.Longitudinal L1 adaptive control of a hypersonic re-entry experiment[C]∥Proceedings of 15th Australian International Aerospace Congress.Melbourne:Australian International Aerospace Congress,2013:717-726.
    [22] LAU K Y,WOO Y,TRAN J,et al.The aerothermal,thermal and structural design process and criteria for the HIFiRE-4 flight test vehicle[R].AIAA-2012-5842,2012.
    [23] SMITH T R,BOWCUTT K G,SELMON J R,et al.HIFiRE 4:a low-cost aerodynamics,stability,and control hypersonic flight experiment[R].AIAA-2011-2275,2011.
    [24] JACKSON K,GRUBER M,BUCCELLATO S.HIFiRE flight 2:a program overview[R].AIAA-2013-0695,2013.
    [25] KEVIN R J,MARK R G,SALVATORE B.Mach 6-8+ hydrocarbon-fueled scramjet flight experiment:the HIFiRE flight 2 project[J].Journal of Propulsion and Power,2015,31(1):36-53.
    [26] FERLEMANN P G.Forebody and inlet design for the hifire 2 flight test[C]∥Proceedings of JANNAF Airbreathing Propulsion Subcommittee Meeting.Boston:ATK Space,2008:1-18.
    [27] STORCH A M,BYNUM M,LIU J,et al.Combustor operability and performance verification for HIFiRE Flight 2[R].AIAA-2011-2249,2011.
    [28] YENTSCH R J,GAITONDE D V.Numerical investigation of dual-mode operation in a rectangular scramjet flowpath[J].Journal of Propulsion and Power,2015,30(2):474-489.
    [29] YENTSCH R J,GAITONDE D V.Unsteady three-dimensional mode transition phenomena in a scramjet flowpath[J].Journal of Propulsion and Power,2014,31(1):104-122.
    [30] CABELL K,HASS N,STORCH AESA Communications,2015:401-408. (HDCR) phase:Ⅰ scramjet test results from the NASA Langley arc-heated scramjet test facility[R].AIAA-2011-2248,2011.
    [31] BORGHI M R,ENGBLOM W A,GEORGIADIS N J.Evaluation of mixing-limited quasi-global wind-US model for HIFire 2 flowpath[R].AIAA-2014-1160,2014.
    [32] BERMEJO-MORENO I,LARSSON J,BODART J,et al.Wall-modeled large-eddy simulations of the HIFiRE-2 scramjet[R].Palo Aito,US:Center for Turbulence Research,2013.
    [33] SAGHAFIAN A,SHUNN L,PHILIPS D A,et al.Large eddy simulations of the HIFiRE scramjet using a compressible flamelet/progress variable approach[J].Proceedings of the Combustion Institute,2015,35(2):2163-2172.
    [34] SCHLOEGEL F,BOYCE R.CFD analysis of radical farming concept scramjet engine[R].AIAA-2009-7416,2009.
    [35] BOYCE R R,MCINTYRE T.Combustion scaling laws and inlet starting for Mach 8 inlet-injection radical farming scramjets[R].Brisbane,Australia:University of Queensland,ADA528340,2010.
    [36] CAPRA B R,BOYCE R R,KUHN M,et al.Combustion enhancement in a scramjet engine using oxygen enrichment and porous fuel injection[J].Journal of Fluid Mechanics,2015,767:173-198.
    [37] CAPRA B R,BOYCE R R,BRIESCHENK S.Numerical modelling of porous injection in a radical farming scramjet[C]∥Proceedings of the 28th Congress of the International Council of the Aeronautical Sciences.Brisbane,Australia:Brisbane Convention and Exhibition Centre,2012:1-11.
    [38] CAPRA B R,BOYCE R R,KUHN M,et al.Porous versus porthole fuel injection in a radical farming scramjet:numerical analysis[J].Journal of Propulsion and Power,2015,31(3):789-804.
    [39] CAPRA B R.Porous fuel injection with oxygen enrichment in a viable scramjet engine[C]∥Proceedings of the 19th Australasian Fluid Mechanics Conference.Melbourne:RMIT University,2014:1-4.
    [40] OGAWA H,CAPRA B,LORRAIN P.Numerical investigation of upstream fuel injection through porous media for scramjet engines via surrogate-assisted evolutionary algorithms[R].AIAA-2015-0884,2015.
    [41] EGGERS T,SILVESTER T B,PAULL A,et al.Aerodynamic design of hypersonic re-entry flight HIFiRE 7[R].AIAA-2009-7256,2009.
    [42] ROBERTS M E,SMART M K,FROST M A.HIFiRE 7:design to achieve scientific goals[R].AIAA-2012-5841,2012.
    [43] SMART M K.Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J].Journal of Propulsion and Power,1999,15(3):408-416.
    [44] SMART M K,SURAWEERA M V.HIFiRE 7:development of a 3-D scramjet for flight testing[R].AIAA-2009-7259,2009.
    [45] GOLLAN R J,FERLEMANN P G.Investigation of REST-class hypersonic inlet designs[R].AIAA-2011-2254,2011.
    [46] AGON A,ABEYNAYAKE D,SMART M.Applicability of viscous and inviscid flow solvers to the hypersonic REST inlet[C]∥Proceedings of 18th Australasian Fluid Mechanics Conference.Launceston,Australia:Australasian Fluid Mechanics Society,2012:1-4.
    [47] CHAN W Y K,RAZZAQI S A,SMART M K,et al.Freejet testing of the 75%-scale HIFiRE 7 REST scramjet engine[R].AIAA-2014-2931,2014.
    [48] ROLLINS E,VALASEK J,MUSE J A,et al.Nonlinear adaptive dynamic inversion applied to a generic hypersonic vehicle[R].AIAA-2013-5234,2013.
    [49] VICK T J.Geometry modeling and adaptive control of air-breathing hypersonic vehicles[D].Cincinnati,US:University of Cincinnati,2014.
    [50] WIESE D P,ANNASWAMY A M,MUSE J A,et al.Adaptive control of a generic hypersonic vehicle[R].AIAA-2013-4514,2013.
    [51] BISEK N J.High-fidelity simulations of the HIFiRE-6 flow path at angle of attack[R].AIAA-2016-4276,2016.
    [52] STEPHEN E J,HOENISCH S R,RIGGS C J,et al.HIFiRE-6 unstart conditions at off-design Mach numbers[R].AIAA-2015-0109,2015.
    [53] HOHN O,GUELHAN A.Analysis of a three-dimensional,high pressure ratio scramjet inlet with variable internal contraction[R].AIAA-2012-5975,2012.
    [54] GLASS D E,CAPRIOTTI D P,REIMER T,et al.Testing of DLR C/C-SiC and C/C for HIFiRE 8 scramjet combustor[R].AIAA-2014-3089,2014.
    [55] ALESI H,PAULL A,SMART M,et al.A concept for the HIFiRE 8 flight test[C]∥Proceedings of 22nd ESA Symposium on European Rocket and Balloon Programmes and Related Research.Tromso,Norway:
  • 加载中
计量
  • 文章访问数:  939
  • HTML浏览量:  6
  • PDF量:  700
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-25
  • 刊出日期:  2018-03-28

目录

    /

    返回文章
    返回