留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速气流冲击柱状泡沫多孔体的传热特性分析

李振环 孙海锋 李潇磊 夏新林

李振环, 孙海锋, 李潇磊, 夏新林. 高速气流冲击柱状泡沫多孔体的传热特性分析[J]. 航空动力学报, 2018, 33(8): 1821-1829. doi: 10.13224/j.cnki.jasp.2018.08.004
引用本文: 李振环, 孙海锋, 李潇磊, 夏新林. 高速气流冲击柱状泡沫多孔体的传热特性分析[J]. 航空动力学报, 2018, 33(8): 1821-1829. doi: 10.13224/j.cnki.jasp.2018.08.004
Analysis of heat transfer characteristic of cylindrical foam porous block with high speed flow around[J]. Journal of Aerospace Power, 2018, 33(8): 1821-1829. doi: 10.13224/j.cnki.jasp.2018.08.004
Citation: Analysis of heat transfer characteristic of cylindrical foam porous block with high speed flow around[J]. Journal of Aerospace Power, 2018, 33(8): 1821-1829. doi: 10.13224/j.cnki.jasp.2018.08.004

高速气流冲击柱状泡沫多孔体的传热特性分析

doi: 10.13224/j.cnki.jasp.2018.08.004
基金项目: 国家自然科学基金(51536001)

Analysis of heat transfer characteristic of cylindrical foam porous block with high speed flow around

  • 摘要: 采用流体/多孔区域一体化单区域算法,数值研究了高速绕流条件下前置于圆柱体前缘表面的柱状泡沫多孔体内部的传热特性。基于蒙特卡罗法考虑多孔域内的辐射热效应,分析了变化多孔区域长度和多孔阻力特性对模型激波阻力和前缘多孔区域气动热的影响。结果表明:在圆柱体前缘安置一定长度及带有适当阻力特性的泡沫多孔材料,可同时减小整体激波阻力并降低前缘表面的气动热效应。在模拟工况下,无量纲长度1.0、黏性阻力系数0.2×107m-2及惯性阻力系数200m-1的前缘泡沫多孔可减小激波阻力13.5%,降低约75%的前缘表面的平均气动热流密度。保持无量纲长度不变,减小泡沫多孔区域惯性阻力系数会降低激波阻力,但会略微增加前缘壁面气动热流密度。

     

  • [1] REDING J P,GUENTHER R A,RICHTER B J.Unsteady aerodynamic considerations in the design of a drag-reduction spike[J].Journal of Spacecraft and Rockets,1977,14(1):54-60.
    [2] HUANG Wei,YAN Li,LIU Jun,et al.Drag and heat reduction mechanism in the combinational opposing jet and acoustic cavityconcept for hypersonic vehicles[J].Aerospace Science and Technology,2015,42:407-414.
    [3] FOMIN V M,MIRONOV S G,SERDYUK K M.Reducing the wave drag of bodies in supersonic flows using porous materials[J].Technical Physics Letters,2009,35(2):117-119.
    [4] BEDAREV I A,MIRONOV S G,SERDYUK K M,et al.Physical and mathematical modeling of a supersonic flow around a cylinder with a porous insert[J].Journal of Applied Mechanics and Technical Physics,2011,52(1):9-17.
    [5] MIRONOV S G,MASLOV A A,POPLAVSKAYA T V,et al.Modeling of a supersonic flow around a cylinder with a gas-permeable porous insert[J].Journal of Applied Mechanics and Technical Physics,2015,56(4):549-557.
    [6] LIU Yuanqing,JIANG Peixue,JIN Shaoshan,et al.Transpiration cooling of a nose cone by various foreign gases[J].International Journal of Heat and Mass Transfer,2016,53(23/24):5364-5372.
    [7] 张锡文,李亨,姚朝晖.多孔介质/纯流体耦合区域内可压缩气体的流动[J].化工学报,2003,54(9):1209-1214.ZHANG Xiwen,LI Heng,YAO Zhaohui.Compressible gas flow in porous media/fluid coupled areas[J].Journal of Chemical Industry and Engineering,2003,54(9):1209-1214.(in Chinese)
    [8] 沈淳,孙凤贤,夏新林,等.局部多孔壁-内腔结构的气动加热瞬态特性[J].宇航学报,2012,33(8):1006-1012.SHEN Chun,SUN Fengxian,XIA Xinlin,et al.Transient characteristics of aerodynamically heating partial porous wall-inner cavity[J].Journal of Astronautics,2012,33(8):1006-1012.(in Chinese)
    [9] TAN Hua,PILLAI K M.Finite element implementation of stress-jump and stress-continuity conditions at porous-medium,clear-fluid interface[J].Computers and Fluids,2009,38(6):1118-1131.
    [10] YU Peng,ZENG Yan,LEE T S,et al.Steady flow around and through a permeable circular cylinder[J].Computers and Fluids,2011,42(1):1-12.
    [11] 安德森.计算流体力学基础及其应用[M].吴松平,刘赵淼,译.北京:机械工业出版社,2007.
    [12] WU Zhiyong,CALIOT C,FLAMANT G,et al.Numerical simulation of convective heat transfer between air flow and ceramic foams to optimize volumetric solar air receiver performances[J].International Journal of Heat and Mass Transfer,2011,54(7/8):1527-1537.
    [13] 陈学,李洋,夏新林,等.高温圆管内多孔介质耦合换热的辐射作用[J].航空动力学报,2016,31(10):2437-2442.CHEN Xue,LI Yang,XIA Xinlin,et al.Effects of radiation on the coupled heat transfer in a high temperature tube filled with porous media[J].Journal of Aerospace Power,2016,31(10):2437-2442.(in Chinese)
    [14] MODEST M.Radiative heat transfer[M].2nd ed.San Diego:Academic Press,2003.
    [15] 余其铮.辐射换热原理[M].哈尔滨:哈尔滨工业大学出版社,2000.
    [16] LORETZ M,COQUARD R,BAILLIS D,et al.Metallic foams:radiative properties/comparison between different models[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2008,109(1):16-27.
    [17] MENTER F R.Two-equation eddy-viscosity turbulence models for engineering applications[J].AIAA Journal,1994,32(8):1598-1605.
    [18] EDWARDS J R,LIOU M S.Low-diffusion flux-splitting methods for flows at all speed[J].AIAA Journal,1998,36(9):1610-1617.
    [19] LIOU M S.A sequel to AUSM:Part Ⅱ AUSM+ -up for all speeds[J].Journal of Computational Physics,2006,214(1):137-170.
    [20] DECHAUMPHAI P,THORNTON E A,WIETINGA R.Flow-thermal-structural study of aerodynamically heated leading edges[J].Journal of Spacecraft and Rockets,1989,26(4):201-209.
    [21] DE SCHAMPHELEIRE S,DE KERPEL K,AMEEL B,et al.A discussion on the interpretation of the Darcy equation in case of open-cell metal foam based on numerical simulations[J].Materials,2016,9(6):409.1-409.15.
    [22] MOREIRA E A,INNOCENTINI M D M,COURY J R.Permeability of ceramic foams to compressible and incompressible flow[J].Journal of the European Ceramic Society,2004,24(10):3209-3218.
    [23] BONNET J P,TOPIN F,TADRIST L.Flow laws in metal foams:compressibility and pore size effects[J].Transport Porous Media,2008,73(2):233-254.
    [24] MIRONOV S G,KOLOTILOV V A,MASLOV A A.An experimental study of filtration characteristics of highly porous cellular materials[J].Thermophysics and Aeromechanics,2015,5(22):575-583.
  • 加载中
计量
  • 文章访问数:  557
  • HTML浏览量:  4
  • PDF量:  495
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-23
  • 刊出日期:  2018-08-28

目录

    /

    返回文章
    返回