留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吸热型碳氢燃料RP-3替代模型研究

程泽源 朱剑琴 金钊

程泽源, 朱剑琴, 金钊. 吸热型碳氢燃料RP-3替代模型研究[J]. 航空动力学报, 2016, 31(2): 391-398. doi: 10.13224/j.cnki.jasp.2016.02.018
引用本文: 程泽源, 朱剑琴, 金钊. 吸热型碳氢燃料RP-3替代模型研究[J]. 航空动力学报, 2016, 31(2): 391-398. doi: 10.13224/j.cnki.jasp.2016.02.018
CHENG Ze-yuan, ZHU Jian-qin, JIN Zhao. Study on surrogate model of endothermic hydrocarbon fuel RP-3[J]. Journal of Aerospace Power, 2016, 31(2): 391-398. doi: 10.13224/j.cnki.jasp.2016.02.018
Citation: CHENG Ze-yuan, ZHU Jian-qin, JIN Zhao. Study on surrogate model of endothermic hydrocarbon fuel RP-3[J]. Journal of Aerospace Power, 2016, 31(2): 391-398. doi: 10.13224/j.cnki.jasp.2016.02.018

吸热型碳氢燃料RP-3替代模型研究

doi: 10.13224/j.cnki.jasp.2016.02.018
详细信息
    作者简介:

    程泽源(1992-),男,山东济宁人,博士生,主要从事超临界流动换热方面的研究.

  • 中图分类号: V511+.1

Study on surrogate model of endothermic hydrocarbon fuel RP-3

  • 摘要: 利用广义对应态法则对吸热型碳氢燃料RP-3的5种替代模型的密度、黏度、导热系数和比定压热容进行了数值计算.计算温度变化范围为300~800K,压力变化范围为3~6MPa.结果表明:不同替代模型均能定性重现RP-3在拟临界温度附近的物性急剧变化;由53%正十一烷,18%正丁基环己烷,29%1,3,5-三甲基苯组成的3组分替代模型在预测RP-3物性上表现最优,相对于实验数据,300~700K内密度相对误差均小于0.08;替代模型的相对分子质量越大,预测的拟临界温度越高,对拟临界温度下物性值的影响无显著规律.

     

  • [1] Curran E T.Scramjet engines:the first forty years[J].Journal of Propulsion and Power,2001,17(6):1138-1148.
    [2] Huang H,Spadaccini L J,Sobel D R.Fuel-cooled thermal management for advanced aeroengines[J].Journal of Engineering for Gas Turbines and Power,2004,126(2):284-293.
    [3] 沈维道,童钧耕.工程热力学[M].北京:高等教育出版社,2007.
    [4] Edwards T,Maurice L Q.Surrogate mixtures to represent complex aviation and rocket fuels[J].Journal of Propul-sion and Power,2001,17(2):461-466.
    [5] Schulz W D.Oxidation products of a surrogate JP-8 fuel[J].Preprints-American Chemical Society:Division of Petroleum Chemistry,1992,37(2):383-392.
    [6] Violi A,Yan S,Eddings E G,et al.Experimental formula tion and kinetic model for JP-8 surrogate mixtures[J].Combustion Science and Technology,2002,174(11/12):399-417.
    [7] Dagaut P.On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel[J].Physical Chem-istry Chemical Physics,2002,4(11):2079-2094.
    [8] 范学军,俞刚.大庆RP-3航空煤油热物性分析[J].推进技术,2006,27(2):187-192. FAN Xuejun,YU Gang.Analysis of thermophysical prop erties of Daqing RP23 aviation kerosene[J].Journal of Propulsion Technology,2006,27(2):187-192.(in Chinese)
    [9] ZHONG Fengquan,FAN Xuejun,YU Gang,et al.Heat transfer of aviation kerosene at supercritical conditions[J].Journal of Thermophysics and Heat Transfer,2009,23(3):543-550.
    [10] Huber M L.Thermophysical properties of hydrocarbon mixtures database:version 3.1[R].Gaithersburg,US:National Institute of Standards and Technology,2003.
    [11] Leland T W,Chappelear P S.The corresponding states principle:a review of current theory and practice[J].In-dustrial and Engineering Chemistry,1968,60(7):15-43.
    [12] Poling B E,Prausnitz J M,John Paul O C,et al.The properties of gases and liquids[M].New York:McGraw-Hill,2001.
    [13] Younglove B A,Ely J F.Thermophysical properties of fluids:Ⅱ methane,ethane,propane,isobutane,and normal butane[J].Journal of Physical and Chemical Reference Data,1987,16(4):577-798.
    [14] 任雨舟.超临界压力下碳氢燃料流动不稳定性的数值研究[D].北京:北京航空航天大学,2012. REN Yuzhou.A numerical study of flow instabilities in hydrocarbon fuels at supercritical pressure[D].Beijing:Beijing University of Aeronautics and Astronautics,2012.(in Chinese)
    [15] Ely J F,Hanely H J M.Prediction of transport properties:Ⅰ viscosity of fluids and mixtures[J].Industrial and Engineering Chemistry Fundamentals,1981,20(4):323-332.
    [16] Lucas K.Phase equilibria and fluid properties in the chemical industry[M].Frakfurt:Dechema,1980.
    [17] Ely J F,Hanley H J M.Prediction of transport properties:Ⅱ thermal conductivity of pure fluids and mixtures[J].Industrial and Engineering Chemistry Fundamentals,1983,22(1):90-97.
    [18] 王跃武,陈建新,胡芃,等.HFC-227ea 的焓、熵、比热容计算[J].中国科学技术大学学报,2008,38(1):89-93. WANG Yuewu,CHEN Jianxin,HU Fan,et al.Calcula tion of enthalpy,entropy and specific heat capacity of HFC-227ea[J].Journal of University of Science and Technology of China,2008,38(1):89-93.(in Chinese)
    [19] 张春本.超临界压力下碳氢燃料的流动与换热特性研究[D].北京:北京航空航天大学,2011. ZHANG Chunben.Investigation of flow and heat transfer characteristics of hydrocarbon fuel at supercritical pressures[D].Beijing:Beijing University of Aeronautics and Astronautics,2011.(in Chinese)
    [20] Ren Y Z,Zhu J Q,Deng H W.Numerical study of heat transfer of RP-3 at supercritical pressure[J].Advanced Materials Research,2013,663:470-476.
    [21] Dagaut P,Cathonnet M.The ignition,oxidation,and combustion of kerosene:a review of experimental and kinetic modeling[J].Progress in Energy and Combustion Science,2006,32(1):48-92.
    [22] 张春本,邓宏武,徐国强,等.超临界压力下航空煤油RP-3焓值的测量及换热研究[J].航空动力学报,2010,25(2):331-335. ZHANG Chunben,DENG Hongwu,XU Guoqiang,et al.Enthalpy measurement and heat transfer investigation of RP-3 kerosene at supercritical pressure[J].Journal of Aerospace Power,2010,25(2):331-335.(in Chinese)
    [23] Deng H W,Zhu K,Xu G Q,et al.Isobaric specific heat capacity measurement for kerosene RP-3 in the near-critical and supercritical regions[J].Journal of Chemical and Engineering Data,2011,56(2):263-268.
    [24] Deng H W,Zhang C B,Xu G Q,et al.Density meas urements of endothermic hydrocarbon fuel at sub-and supercritical conditions[J].Journal of Chemical and Engineering Data,2011,56(6):2980-2986.
    [25] Deng H W,Zhang C B,Xu G Q,et al.Viscosity meas urements of endothermic hydrocarbon fuel from 298 to 788K under supercritical pressure conditions[J].Journal of Chemical and Engineering Data,2012,57(2):358-365.
  • 加载中
计量
  • 文章访问数:  1083
  • HTML浏览量:  5
  • PDF量:  472
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-13
  • 刊出日期:  2016-02-28

目录

    /

    返回文章
    返回