留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高雷诺数下跨声速自然层流短舱优化设计

曹凡 胡骁 张美芳 唐智礼

曹凡, 胡骁, 张美芳, 唐智礼. 高雷诺数下跨声速自然层流短舱优化设计[J]. 航空动力学报, 2021, 36(8): 1729-1739. doi: 10.13224/j.cnki.jasp.20200459
引用本文: 曹凡, 胡骁, 张美芳, 唐智礼. 高雷诺数下跨声速自然层流短舱优化设计[J]. 航空动力学报, 2021, 36(8): 1729-1739. doi: 10.13224/j.cnki.jasp.20200459
CAO Fan, HU Xiao, ZHANG Meifang, TANG Zhili. Transonic natural laminar flow nacelle optimization design at high Reynolds number[J]. Journal of Aerospace Power, 2021, 36(8): 1729-1739. doi: 10.13224/j.cnki.jasp.20200459
Citation: CAO Fan, HU Xiao, ZHANG Meifang, TANG Zhili. Transonic natural laminar flow nacelle optimization design at high Reynolds number[J]. Journal of Aerospace Power, 2021, 36(8): 1729-1739. doi: 10.13224/j.cnki.jasp.20200459

高雷诺数下跨声速自然层流短舱优化设计

doi: 10.13224/j.cnki.jasp.20200459
基金项目: 

国家自然科学基金(NSFC-12032011,11772154);中央高校基本科研专项资金(NP2020102);江苏高校优势学科建设工程资助项目(PAPD)

详细信息
    作者简介:

    曹凡(1990-),男,博士生,主要从事飞行器多学科优化设计研究

  • 中图分类号: V221.3

Transonic natural laminar flow nacelle optimization design at high Reynolds number

  • 摘要: 为解决高雷诺数下大涵道比发动机自然层流短舱高维优化设计问题,提取短舱3个基准面实现轴对称自然层流优化设计。通过获得较大范围层流区域,从而降低短舱表面摩擦阻力。采用类别形状函数(CST)参数化、γ-Reθt转捩模型和遗传算法建立自然层流(NLF)短舱自动优化流程。表明通过优化短舱基准面建立三维NLF短舱设计方法的可行性。进而通过CATIA二次开发构建三维非轴对称NLF短舱,解决了基准面优化后大量数据点的高效导入和曲面生成问题。针对设计的非轴对称NLF短舱,进行了设计点附近迎角、侧滑角、来流马赫数以及湍流度的转捩敏感性分析。结果表明:跨声速状态下,迎角增大层流范围减小;来流马赫数增大层流范围扩大;侧滑角和湍流度对层流范围影响很小。

     

  • [1] MALIK M R, CROUCH J D, SARIC W S, et al. Application of drag reduction techniques to transport aircraft[M]. New Jersey,US:John Wiley & Sons Limited,2015.
    [2] 朱自强,吴宗成,丁举春. 层流流动控制技术及应用[J]. 航空学报,2011,32(5):765-784. ZHU Ziqiang, WU Zongcheng, DING Juchun.Laminar flow control technology and application[J]. Acta Aeronautica et Astronautica Sinica,2011,32(5):765-784.(in Chinese)
    [3] 朱自强,鞠胜军,吴宗成. 层流流动主/被动控制技术[J]. 航空学报,2016,37(7):2065-2090. ZHU Ziqiang, JU Shengjun, WU Zongcheng. Laminar flow active/passive control technology[J].Acta Aeronautica et Astronautica Sinica,2016,37(7):2065-2090.(in Chinese)
    [4] YOUNGHANS J L,LAHTI D J.Analytical and experimental studies on natural laminar flow nacelles[R]. AIAA 84-0034,1984.
    [5] RIEDEL H, HORSTMANN K H, RONZHEIMER A, et al.Aerodynamic design of a natural laminar flow nacelle and the design validation by flight testing[J]. Aerospace Science and Technology,1998,2(1):1-12.
    [6] 何小龙,白俊强,夏露, 等. 基于EFFD方法的自然层流短舱优化设计[J].航空动力学报,2014,29(10):2311-2320. HE Xiaolong, BAI Junqiang, XIA Lu, et al. Natural laminar flow nacelle optimization design based on EFFD method[J]. Journal of Aerospace Power,2014,29(10):2311-2320.(in Chinese)
    [7] 孟晓轩,白俊强,张美红,等. 基于双eN方法的短舱层流转捩影响因素[J].航空学报,2019,40(11):86-97. MENG Xiaoxuan, BAI Junqiang, ZHANG Meihong, et al. Laminar transition influencing factors of nacelle based on double eN method[J]. Acta Aeronautica et Astronautica Sinica,2019,40(11):86-97.(in Chinese)
    [8] ZHONG Yongjian,LI Songyang.A 3D shape design and optimization method for natural laminar flow nacelle[R]. ASME Paper GT2017-6437,2017.
    [9] WANG S, SUN G, LI C.Natural laminar flow optimization of transonic nacelle based on differential evolution algorithm[J].Journal of Aerospace Engineering,2019,32(4):06019001.1-06019001.10.
    [10] 杜玺, 闫海津, 吴宇昂,等. 跨声速自然层流短舱气动设计和风洞试验研究[J].航空科学技术,2019,30(9):63-72. DU Xi,YAN Haijin,WU Yuang,et al.Aerodynamic design and wind tunnel test of a transonic natural laminar flow nacelle[J].Aeronautical Science and Technology, 2019, 30(9):63-72.(in Chinese)
    [11] 王迅,蔡晋生,屈崑,等. 基于改进CST参数化方法和转捩模型的翼型优化设计[J].航空学报,2015,36(2):449-461. WANG Xun,CAI Jinsheng,QU Kun,et al.Airfoil optimization based on improved CST parametric method and transition model[J].Acta Aeronautica et Astronautica Sinica,2015,36(2):449-461.(in Chinese)
    [12] 廖炎平,刘莉,龙腾. 几种翼型参数化方法研究[J]. 弹箭与制导学报,2011,31(3):160-164. LIAO Yanping, LIU Li, LONG Teng. The research on some parameterized methods for airfoil[J].Journal of Projectiles,Rockets,Missiles and Guidance,2011,31(3):160-164. (in Chinese)
    [13] KULFAN B M. Recent extensions and applications of the "CST" universal parametric geometry representation method[J].The Aeronautical Journal,2010,114(1153):157-176.
    [14] KULFAN B M.Universal parametric geometry representation method[J].Journal of Aircraft,2008,45(1):142-158.
    [15] 宋文萍,吴猛猛,朱震,等. 面向层流减阻设计的转捩预测方法研究[J].空气动力学学报,2018,36(2):213-228. SONG Wenping,WU Mengmeng,ZHU Zhen,et al.Transition prediction methods towards significant drag reduction via laminar flow technology[J]. Acta Aerodynamica Sinica, 2018,36(2):213-228.(in Chinese)
    [16] SARIC W S. Physical description of boundary-layer transition:experimental evidence[R].AGARD-CP-793,1994.
    [17] MENTER F R,LANGTRY R B,LIKKI S R,et al.A correlation-based transition model using local variables:Part Ⅰ model formulation[J]. Journal of Turbomachinery, 2006, 128(3):413-422.
    [18] 乔磊,白俊强,华俊,等.γ-Reθt转捩模型的改进和验证[J]. 航空动力学报,2015,30(10):2488-2497. QIAO Lei,BAI Junqiang,HUA Jun, et al.Improvement and verification of γ-Reθt transition model[J]. Journal of Aerospace Power,2015,30(10):2488-2497.(in Chinese)
    [19] 韩忠华,王绍楠,韩莉,等. 一种基于动模态分解的翼型流动转捩预测新方法[J].航空学报,2017,38(1):35-51. HAN Zhonghua, WANG Shaonan, HAN Li, et al. A novel method for automatic transition prediction of flows overairfoils based on dynamic mode decomposition[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):35-51.(in Chinese)
    [20] LANGTRY R B, MENTER F R.Correlation -based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
    [21] SOMERS D M.Design and experimental results for a natural laminar flow airfoil for general aviation applications[R]. NASA Technical Paper 1861,1981.
    [22] LEE J,JAMESON A.Natural laminar flow airfoil and wing design by adjoint method and automatic transition prediction[R].AIAA-2009-3514,2009.
    [23] TINOCO E N,BRODERSEN O P,KEYE S,et al.Summary data from the sixth AIAA CFD drag prediction workshop:CRM cases[J].Journal of Aircraft,2018,55(4):1352-1379.
    [24] BEASLEY D,BULL D R,MARTIN R R.An overview of genetic algorithms:Part 1 fundamentals[EB/OL].[2020-10-08]. https://sci2s.ugr.es/sites/default/files/files/linksInterest/Tutorials/GA1.pdf.
    [25] HILL G A,KANDIL O A,HAHN A S.Aerodynamic investigations of an advanced over-the-wing nacelle transport aircraft configuration[J].Journal of Aircraft,2009,46(1):25-35.
    [26] 闫海津,杜玺. 一种可变流量系数的通气短舱匹配方法[J]. 航空学报,2018,39(12):124-132. YAN Haijin, DU Xi. A matching method for variable mass flow ratio for through-flow nacelle[J]. Acta Aeronautica et Astronautica Sinica,2018,39(12):124-132.(in Chinese)
    [27] 周桂生,陆文龙.CATIA二次开发技术研究与应用[J].机械设计与制造,2010,1(1):81-83. ZHOU Guisheng, LU Wenlong.Research and application of CATIA secondary development technology[J]. Machinery Design and Manufacture,2010,1(1):81-83.(in Chinese)
  • 加载中
计量
  • 文章访问数:  61
  • HTML浏览量:  3
  • PDF量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-30
  • 刊出日期:  2021-08-28

目录

    /

    返回文章
    返回