留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准一维可压缩瞬变管流的有限体积模型(Ⅱ)管壁温度场的有限体积模型

陈阳 高芳 张振鹏 王海兴 蔡国飙

陈阳, 高芳, 张振鹏, 王海兴, 蔡国飙. 准一维可压缩瞬变管流的有限体积模型(Ⅱ)管壁温度场的有限体积模型[J]. 航空动力学报, 2008, 23(2): 317-322.
引用本文: 陈阳, 高芳, 张振鹏, 王海兴, 蔡国飙. 准一维可压缩瞬变管流的有限体积模型(Ⅱ)管壁温度场的有限体积模型[J]. 航空动力学报, 2008, 23(2): 317-322.
CHEN Yang, GAO Fang, ZHANG Zhen-peng, WANG Hai-xing, CAI Guo-biao. Finite volume model for quasi one-dimensional compressible transient pipe flow (Ⅱ) Finite volume model of temperature field[J]. Journal of Aerospace Power, 2008, 23(2): 317-322.
Citation: CHEN Yang, GAO Fang, ZHANG Zhen-peng, WANG Hai-xing, CAI Guo-biao. Finite volume model for quasi one-dimensional compressible transient pipe flow (Ⅱ) Finite volume model of temperature field[J]. Journal of Aerospace Power, 2008, 23(2): 317-322.

准一维可压缩瞬变管流的有限体积模型(Ⅱ)管壁温度场的有限体积模型

Finite volume model for quasi one-dimensional compressible transient pipe flow (Ⅱ) Finite volume model of temperature field

  • 摘要: 在流场模型的基础上,通过对圆柱坐标系下轴对称管道壁面划分的二维有限体积网格,建立了一种计算管壁瞬变传热的有限体积模型,可处理对流换热和辐射换热两种边界情况,可处理具有包覆层或真空夹层结构的变物性管壁传热.温度场模型是流场建模思想的自然延伸,对二者的组合运用即为所发展的可仿真准一维可压缩流管内瞬变流动的有限体积模型,一方面,在流场仿真的体系内发展了传热计算的部分并最终扩展成为统一的流动/传热仿真体系,另一方面,结合阀芯节流模型,从此模型出发可推导出管路系统常见元件的流场和温度场模型.对某发动机试验台液氧贮箱增压系统的建模与仿真表明,提出的模型体系具有很好的适用范围和良好的仿真精度.

     

  • [1] 陈阳.液体火箭发动机试验台气路系统通用模块化建模与仿真研究[D].北京:北京航空航天大学,2006.
    [2] 陈阳,高芳,张振鹏,等.准一维可压缩瞬变管流的有限体积模型(Ⅰ)流场的有限体积模型[J].航空动力学报,2008,23(2):311-316.CHEN Yang,GAO Fang,ZHANG Zhenpeng,et al.Finite volume model for quasi one-dimensional compressible transient pipe flow(Ⅰ)Finite volume model of flow field[J].Journal of Aerospace Power,2008,23(2):311-316.
    [3] 张育林,刘昆,程谋森.液体火箭发动机动力学理论与应用[M].北京:科学出版社,2005.
    [4] 刘昆,程谋森,张育林.低温推进剂供应管道系统充填过程的动力学模型[J].国防科技大学学报,2003,25(3):1-5.LIU Kun,CHENG Mousen,ZHANG Yulin.Dynamic model of priming processes of cryogenic propellant feed lines[J].Journal of National University of Defense Technology,2003,25(3):1-5.
    [5] Cullimore B A,Beer C M,Johnson D A.Propulsion applications of the NASA standard general purpose thermohydraulic analyzer[R].AIAA2000-3723,2000.
    [6] Schallhorn P A,Palmiter C,Farmer J,et al.Interfacing the generalized fluid system simulation program with the SINDA/G thermal program[R].AIAA2000-2504,2000.
    [7] (美)Partankar S V.传热与流体流动的数值计算[M].张政,译.北京:科学出版社,1984.
    [8] 王补宣.工程传热传质学[M].北京:科学出版社,1998.
    [9] (美)Karlekar B V,Desmond R M.工程传热学[M].刘吉萱,译.北京:人民教育出版社,1981.
    [10] 杨世铭.传热学[M].北京:高等教育出版社,1987.
    [11] 朱谷君.工程传热传质学[M].北京:航空工业出版社,1989.
    [12] 钱滨江,伍贻文,常家芳,等.简明传热手册[M].北京:高等教育出版社,1983.
    [13] 陈阳,张振鹏,瞿骞,等.液体火箭发动机试验台贮箱增压系统数值仿真[J].航空动力学报,2007,22(1):96-101.CHEN Yang,ZHANG Zhenpeng,QU Qian,et al.Numerical simulation for tank pressurization system of LRE testbed[J].Journal of Aerospace Power,2007,22(1):96-101.
    [14] 翟骞.高压、小气枕低温贮箱智能增压技术[J].低温工程,2005,(5):22-25.QU Qian.An intelligence pressurization technology of high pressure and small ullage at low temperature Tank[J].Cryogenics,2005,(5):22-25.
  • 加载中
计量
  • 文章访问数:  1639
  • HTML浏览量:  2
  • PDF量:  421
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-01-15
  • 修回日期:  2007-03-28
  • 刊出日期:  2008-02-28

目录

    /

    返回文章
    返回