留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液膜再生复合冷却中液膜传热特性

杨薇 孙冰

杨薇, 孙冰. 液膜再生复合冷却中液膜传热特性[J]. 航空动力学报, 2011, 26(9): 2015-2020.
引用本文: 杨薇, 孙冰. 液膜再生复合冷却中液膜传热特性[J]. 航空动力学报, 2011, 26(9): 2015-2020.
YANG Wei, SUN Bing. Thermal characteristics of liquid film in a film regenerative cooling system[J]. Journal of Aerospace Power, 2011, 26(9): 2015-2020.
Citation: YANG Wei, SUN Bing. Thermal characteristics of liquid film in a film regenerative cooling system[J]. Journal of Aerospace Power, 2011, 26(9): 2015-2020.

液膜再生复合冷却中液膜传热特性

Thermal characteristics of liquid film in a film regenerative cooling system

  • 摘要: 对液体火箭发动机液膜再生复合冷却进行了算法研究.综合考虑了发动机内部化学反应、蒸发、卷吸、对流、导热、辐射等因素,将冷却液膜分为显热区、潜热区及气膜区三个区域进行了计算.推导了液膜长度和厚度的计算方法,分析了液膜再生复合冷却效率及各因素对液膜传热特性的影响.计算结果表明:①液膜入口质量流量越大,液膜区长度越长,冷却效率越高,复合冷却效率可维持在0.57以上.②高温燃烧室内膜的液体段长度很短,在液膜存在区域内冷却效率高达0.9.③液膜消失后,头部冷却液膜的设计仍对室壁起了很好的冷却保护作用,低温边区一直延伸至出口.④液膜吸收的显热和液膜蒸发吸收的热量及高温燃气与膜间的对流在液膜区内起了主要作用,而卷吸造成的质量损失及传热不可忽略.

     

  • [1] Ely M J,Jubran B A.A numerical study on improving large angle film cooling performance through the use of sister holes[J].Numerical Heat Transfer Part A,2009,55(7):634-653.
    [2] Yang X B,Badcocky K J,Richards B E,et al.A numerical study of hypersonic turbulent film cooling .AIAA 2005-386,2005.
    [3] Ajmani K,Breisacher K J,Ghosn L J,et al.Numerical and experimental studies of a film cooled pulsed detonation tube . AIAA 2005-3509,2005.
    [4] Yu Y C, Schuff R Z,Anderson W E.Liquial film cooling using swirl in rocket combustors .AIAA 2004-3360,2004.
    [5] Zhang H W,He Y L,Tao W Q.Numerical study of film and regenerative cooling in a thrust chamber at high pressure[J].Numerical Heat Transfer,2007,52(11):991-1007.
    [6] Schiffer H P,Biba S.Model for the prediction of heat transfer coefficients in the leading edge region of film cooled turbine blades .AIAA 98-4028,1998.
    [7] Collie W V,Burgun R,Neinzen S.Advanced propulsion system design and integration for a turbojet powered unmanned aerial vehicle .AIAA-2003-0415,2003.
    [8] Rabe A,Andeson J.A facility for Active flow control research in serpentine inlets .AIAA Paper 2002-0510,2002.
    [9] Brear M J,Warfield Z,Mangus J F.Flow separation within the engine inlet of an uninhabited combat air vehicle (UCAV)[J].Journal of Fluids Engineering,2004,126(2):266-272.
    [10] Stechman R C,Oberstone J,Howell J C.Film cooling design criteria for small rocket engines .AIAA 68-617,1968.
    [11] 狄连顺,王明坤.液体火箭发动机辐射冷却推力室的传热计算[J].推进技术,1987,2(1):41-50.
    [12] Harper D K,Leitch T A,Ng W F,et al.Boundary layer control and wall-pressure fluctuations in a serpentine inlet .AIAA 2000-3597,2000.
    [13] Sun S,Guo R W.The serpentine inlet performance enhancement using vortex generator based flow control[J].Chinese Journal of Aeronautics,2006,27(1):10-16.
    [14] 杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.
    [15] Purohit G P,Donatelli P A,Ellison J R.Transient thermal model of a film-cooled bipropellant thruster .AIAA 2000-1072,2000.
    [16] Arnold R,Suslov D,Haidn O J.Influence parameters on film cooling effectiveness in a high pressure subscale combustion chamber .AIAA-2009-0453,2009.
    [17] Kirchberger C,Schlieben G,Hupfer A,et al.Investigation on film cooling in a kerosene/GOx combustion chamber .AIAA-2009-5406,2009.
  • 加载中
计量
  • 文章访问数:  1733
  • HTML浏览量:  5
  • PDF量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-29
  • 修回日期:  2010-12-31
  • 刊出日期:  2011-09-28

目录

    /

    返回文章
    返回