主管单位:中华人民共和国工业和信息化部
主办单位:西北工业大学  中国航空学会
地       址:西北工业大学友谊校区航空楼
浮升力对航空煤油传热流动影响的数值研究
作者:
作者单位:

重庆建筑工程职业学院 城市轨道交通与机电工程系

作者简介:

通讯作者:

中图分类号:

V312

基金项目:

重庆市教委科学技术研究项目(KJQN201800735)


Numerical Study on the Effect of Buoyancy on Heat Transfer and Flow of Aviation Kerosene
Author:
Affiliation:

Department of Urban Rail Transit and Electromechanical Engineering, Chongqing Jianzhu College

Fund Project:

Scientific and Technological Research Program of Chongqing Municipal Education Commision

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    不同重力条件下,浮升力对航空煤油再生冷却效果会带来不同影响。建立 RNG k-ε 湍流三维模型,通过同等条件下与他人实验和模拟得到的壁面温度对比验证该模型;针对航空燃油 RP-3 在不同重力条件下水平管内的浮力诱导的温度分布、二次流速度、对流传热系数和湍动能的变化,研究重力条件变化时航空燃油浮升力对传热流动的作用机制。结果表明:重力加倍增大将导致浮升力对流的影响显著增强,并且湍动能随之非线性增加,对流传热系数呈现出明显的提升;重力条件改变时,重力方向上浮升力诱导的二次流发生了复杂的演变,对流传热系数呈现出先减小后增大,最终再减小的变化趋势;当航空燃油温度超过超临界温度时,对流传热系数发生突变,同时造成管壁温度出现显著差异。

    Abstract:

    In order to further clarify the influence of buoyancy on the regeneration cooling effect of aviation kerosene, and to provide theoretical support for improving the regeneration cooling effect, this paper established an RNG k-ε turbulence three-dimensional model, which was verified by comparing the wall temperature obtained by other experiments and simulations under the same conditions. Aiming at the variation of temperature distribution, secondary flow velocity, convective heat transfer coefficient and turbulent kinetic energy induced by the buoyancy of the aviation kerosene RP-3 in the horizontal pipe under different gravity conditions, the effect of jet fuel buoyancy on the heat transfer flow is discussed. The research results show that the increase of gravity will significantly increase the influence of buoyancy on convection, and the turbulent kinetic energy will increase nonlinearly, and the convective heat transfer coefficient will be significantly improved. When the gravitational conditions change, the secondary flow induced by buoyancy in the direction of gravity undergoes a complicated evolution. The convective heat transfer coefficient first decreases, then increases, and finally decreases. When the temperature of aviation kerosene exceeds the supercritical temperature, the convective heat transfer coefficient changes abruptly, causing significant differences in the wall temperature.

    参考文献
    相似文献
    引证文献
引用本文

姚长鑫.浮升力对航空煤油传热流动影响的数值研究[J].航空工程进展,2021,12(3):153-160

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-09-05
  • 最后修改日期:2020-11-15
  • 录用日期:2020-11-30
  • 在线发布日期: 2021-06-25
  • 出版日期: