留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沟槽超疏水复合壁面湍流边界层减阻机理的TRPIV实验研究

刘丽霞 王康俊 王鑫蔚 田海平 姜楠

刘丽霞, 王康俊, 王鑫蔚, 等. 沟槽超疏水复合壁面湍流边界层减阻机理的TRPIV实验研究[J]. 实验流体力学, 2021, 35(1): 117-125. doi: 10.11729/syltlx20200001
引用本文: 刘丽霞, 王康俊, 王鑫蔚, 等. 沟槽超疏水复合壁面湍流边界层减阻机理的TRPIV实验研究[J]. 实验流体力学, 2021, 35(1): 117-125. doi: 10.11729/syltlx20200001
LIU Lixia, WANG Kangjun, WANG Xinwei, et al. TRPIV experimental investigation of drag reduction mechanism in turbulent boundary layer over superhydrophobic-riblet surface[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 117-125. doi: 10.11729/syltlx20200001
Citation: LIU Lixia, WANG Kangjun, WANG Xinwei, et al. TRPIV experimental investigation of drag reduction mechanism in turbulent boundary layer over superhydrophobic-riblet surface[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 117-125. doi: 10.11729/syltlx20200001

沟槽超疏水复合壁面湍流边界层减阻机理的TRPIV实验研究

doi: 10.11729/syltlx20200001
基金项目: 

国家自然科学基金 11732010

国家自然科学基金 11972251

国家自然科学基金 11872272

国家自然科学基金 11902218

国家自然科学基金 11802195

国家重点研发计划资助项目 2018YFC0705300

详细信息
    作者简介:

    刘丽霞(1996-), 女, 山西吕梁人, 硕士研究生。研究方向: 沟槽超疏水复合壁面湍流边界层减阻机理的实验研究。通信地址: 天津市天津大学北洋园校区36楼412(300354)。E-mail: 609403186@qq.com

    通讯作者:

    姜楠, E-mail: nanj@tju.edu.cn

  • 中图分类号: O357.5;O357.4

TRPIV experimental investigation of drag reduction mechanism in turbulent boundary layer over superhydrophobic-riblet surface

  • 摘要: 利用TRPIV实验分别测量了湍流边界层在亲水壁面、超疏水壁面以及沟槽超疏水复合壁面上的瞬时速度场,对比分析了3种壁面的摩擦阻力,发现沟槽超疏水复合壁面的减阻率能够达到20.7%,而超疏水壁面只有14.6%。通过对比分析湍流边界层在3种壁面上的湍流脉动强度,发现法向湍流脉动强度在3种壁面上无明显变化,而在y+ < 150区域的同一法向高度上,流向湍流脉动强度在沟槽超疏水复合壁面上相对于亲水壁面的减小程度比超疏水壁面更高。为了进一步研究不同尺度的湍流脉动在不同壁面的变化情况,本文采用基于傅里叶变换的空间滤波法,将瞬时脉动速度场分解为空间流向波长大于δ的大尺度部分和波长小于δ的小尺度部分,发现超疏水壁面和沟槽超疏水复合壁面对大尺度流向湍流脉动强度的抑制作用可以到达y+=150的法向位置,而对小尺度流向湍流脉动强度的抑制作用只能到达y+=100的法向位置。采用以顺向涡为条件的大尺度脉动速度的条件相位平均方法,发现在yref=0.1δ处超疏水壁面和沟槽超疏水复合壁面相比于亲水壁面都存在正的大尺度流向脉动与负的法向脉动增强、负的大尺度流向脉动与正的法向脉动减弱以及脉动速度的0等值线偏离条件相位平均参考点的趋势,且沟槽超疏水复合壁面的移动趋势最弱。通过对比3种壁面不同法向高度的顺向涡强度值,同法向高度上亲水壁面、超疏水壁面以及沟槽超疏水复合壁面的涡强度值依次减弱,表明沟槽超疏水复合壁面比超疏水壁面能更有效地抑制近壁区涡结构的运动,从而实现更好的减阻效果。
  • 图  1  实验装置示意图

    Figure  1.  Experimental setup diagram

    图  2  实验模型横截面示意图

    Figure  2.  Cross-section schematic diagram of the experimental model

    图  3  平均速度剖面

    Figure  3.  Comparison of mean velocity profiles

    图  4  湍流度和雷诺切应力剖面

    Figure  4.  Turbulence intensity and Reynold shear stress profiles

    图  5  不同尺度的脉动速度

    Figure  5.  Fluctuation velocity of different scales

    图  6  分尺度湍流脉动强度

    Figure  6.  Turbulence fluctuation intensity of different scales

    图  7  yref=0.1δ时大尺度流向脉动速度条件相位平均等值线图

    Figure  7.  Conditional phase average contour of large scale streamwise fluctuating velocity condition at yref=0.1δ

    图  8  yref=0.1δ时大尺度法向脉动速度条件相位平均等值线图

    Figure  8.  Conditional phase average contour of large scale normal fluctuating velocity condition at yref=0.1δ

    图  9  顺向涡强度

    Figure  9.  Prograde vorticity strength

    表  1  基本湍流减阻参数

    Table  1.   Basic turbulent drag reduction parameters

    参数 亲水壁面 超疏水壁面 沟槽超疏水复合壁面
    U/(m·s-1) 0.26 0.26 0.26
    uτ/(m·s-1) 0.0119 0.0110 0.0105
    Reτ 621 574 552
    τw/(kg·m-1·s-2) 0.140 745 0.120 886 0.109 254
    Cf 0.003 965 0.003 388 0.003 144
    η 14.6% 20.7%
    下载: 导出CSV
  • [1] BECHERT D W, BRUSE M, HAGE W, et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry[J]. Journal of Fluid Mechanics, 1997, 338: 59-87. doi: 10.1017/s0022112096004673
    [2] CHAMORRO L P, ARNDT R E A, SOTIROPOULOS F. Drag reduction of large wind turbine blades through riblets: Evaluation of riblet geometry and application strategies[J]. Renewable Energy, 2013, 50: 1095-1105. doi: 10.1016/j.renene.2012.09.001
    [3] MAMORI H, YAMAGUCHI K, SASAMORI M, et al. Analysis of vortical structure over sinusoidal riblet surface in turbulent channel flow by means of Dual-plane stereoscopic PIV measurement[C]//Proc of the APS Division of Fluid Dynamics Meeting. 2016.
    [4] BENSCHOP H O G, GUERIN A J, BRINKMANN A, et al. Drag-reducing riblets with fouling-release properties: development and testing[J]. Biofouling, 2018, 34(5): 532-544. doi: 10.1080/08927014.2018.1469747
    [5] YANG S Q, LI S, TIAN H P, et al. Tomographic PIV investigation on coherent vortex structures over shark-skin-inspired drag-reducing riblets[J]. Acta Mechanica Sinica, 2016, 32(2): 284-294. doi: 10.1007/s10409-015-0541-3
    [6] LI S, JIANG N, YANG S Q, et al. Coherent structures over riblets in turbulent boundary layer studied by combining time-resolved particle image velocimetry (TRPIV), proper orthogonal decomposition (POD), and finite-time Lyapunov exponent (FTLE)[J]. Chinese Physics B, 2018, 27(10): 104701. doi: 10.1088/1674-1056/27/10/104701
    [7] 李山, 姜楠, 杨绍琼. 正弦波沟槽对湍流边界层相干结构影响的TR-PIV实验研究[J]. 物理学报, 2019, 68(7): 188-198. doi: 10.7498/aps.68.20181875

    LI S, JIANG N, YANG S Q. Influence of sinusoidal riblets on the coherent structures in turbulent boundary layer studied by time-resolved particle image velocimetry[J]. Acta Physica Sinica, 2019, 68(7): 188-198. doi: 10.7498/aps.68.20181875
    [8] 王鑫, 李山, 唐湛棋, 等. 沟槽对湍流边界层中展向涡影响的实验研究[J]. 实验流体力学, 2018, 32(1): 55-63. doi: 10.11729/syltlx20170092

    WANG X, LI S, TANG Z Q, et al. An experimental study onriblet-induced spanwise vortices in turbulent boundary layers[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 55-63. doi: 10.11729/syltlx20170092
    [9] PARK H, SUN G Y, KIM C J. Superhydrophobic turbulent drag reduction as a function of surface grating parameters[J]. Journal of Fluid Mechanics, 2014, 747: 722-734. doi: 10.1017/jfm.2014.151
    [10] RASTEGARI A, AKHAVAN R. On the mechanism of turbulent drag reduction with super-hydrophobic surfaces[J]. Journal of Fluid Mechanics, 2015, 773: R4. doi: 10.1017/jfm.2015.266
    [11] GOSE J W, GOLOVIN K, BOBAN M, et al. Characterization of superhydrophobic surfaces for drag reduction in turbulent flow[J]. Journal of Fluid Mechanics, 2018, 845: 560-580. doi: 10.1017/jfm.2018.210
    [12] ARENAS I, GARCÍA E, FU M K, et al. Comparison between super-hydrophobic, liquid infused and rough surfaces: a direct numerical simulation study[J]. Journal of Fluid Mechanics, 2019, 869: 500-525. doi: 10.1017/jfm.2019.222
    [13] ROWIN W A, GHAEMI S. Streamwise and spanwise slip over a superhydrophobic surface[J]. Journal of Fluid Mechanics, 2019, 870: 1127-1157. doi: 10.1017/jfm.2019.225
    [14] FAIRHALL C T, ABDERRAHAMAN-ELENA N, GARCÍA-MAYORAL R. The effect of slip and surface texture on turbulence over superhydrophobic surfaces[J]. Journal of Fluid Mechanics, 2019, 861: 88-118. doi: 10.1017/jfm.2018.909
    [15] 余永生, 魏庆鼎. 疏水性材料减阻特性实验研究[J]. 实验流体力学, 2005, 19(2): 60-66. doi: 10.3969/j.issn.1672-9897.2005.02.012

    YU Y S, WEI Q D. Experiments on the drag-reduction of non-wetting materials[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2): 60-66. doi: 10.3969/j.issn.1672-9897.2005.02.012
    [16] ZHANG J X, TIAN H P, YAO Z H, et al. Evolutions of hairpin vortexes over a superhydrophobic surface in turbulent boundary layer flow[J]. Physics of Fluids, 2016, 28(9): 095106. doi: 10.1063/1.4962513
    [17] ZHANG J X, TIAN H P, YAO Z H, et al. Mechanisms of drag reduction of superhydrophobic surfaces in a turbulent boundary layer flow[J]. Experiments in Fluids, 2015, 56(9): 179. doi: 10.1007/s00348-015-2047-y
    [18] 胡海豹, 何强, 鲍路瑶, 等. 二级规则微结构对低表面能纳米通道内微流动的影响[J]. 机械工程学报, 2014, 50(12): 165-170. doi: 10.3901/JME.2014.12.165

    HU H B, HE Q, BAO L Y, et al. Effect of secondary regular microstructure on the micro-flows in nano-channel with low surface energy[J]. Chinese Journal of Mechanical Engineering, 2014, 50(12): 165-170. doi: 10.3901/JME.2014.12.165
    [19] 苏健, 田海平, 姜楠. 逆向涡对超疏水壁面减阻影响的TRPIV实验研究[J]. 力学学报, 2016, 48(5): 1033-1039. doi: 10.6052/0459-1879-16-140

    SU J, TIAN H P, JIANG N. Trpiv experimental investigation of the effect of retrograde vortex on drag-reduction mechanism over superhydrophobic surfaces[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1033-1039. doi: 10.6052/0459-1879-16-140
    [20] TIAN H P, ZHANG J X, JIANG N, et al. Effect of hierarchical structured superhydrophobic surfaces on coherent structures in turbulent channel flow[J]. Experimental Thermal and Fluid Science, 2015, 69: 27-37. doi: 10.1016/j.expthermflusci.2015.07.018
    [21] TIAN H P, ZHANG J X, WANG E D, et al. Experimental investigation on drag reduction in turbulent boundary layer oversuperhydrophobic surface by TRPIV[J]. Theoretical and Applied Mechanics Letters, 2015, 5(1): 45-49. doi: 10.1016/j.taml.2015.01.003
    [22] 刘铁峰, 王鑫蔚, 唐湛棋, 等. 超疏水表面对湍流边界层相干结构影响的TRPIV实验研究[J]. 实验流体力学, 2019, 33(3): 90-96. doi: 10.11729/syltlx20180101

    LIU T F, WANG X W, TANG Z Q, et al. TRPIV experimental study of the effect of superhydrophobic surface on the coherent structure of turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 90-96. doi: 10.11729/syltlx20180101
    [23] 李艳峰, 于志家, 于跃飞, 等. 铝合金基体上超疏水表面的制备[J]. 高校化学工程学报, 2008, 22(1): 6-10. doi: 10.3321/j.issn:1003-9015.2008.01.002

    LI Y F, YU Z J, YU Y F, et al. Fabrication of super-hydrophobic surfaces on aluminum alloy[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(1): 6-10. doi: 10.3321/j.issn:1003-9015.2008.01.002
    [24] 潘光, 黄明明, 胡海豹, 等. Spalding公式在脊状表面湍壁摩擦力测量中的应用[J]. 力学学报, 2009, 41(1): 15-20.

    PAN G, HUANG M M, HU H B, et al. Application of spalding formula in wall friction stress measurement on riblet surface[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(1): 15-20.
    [25] 王康俊, 白建侠, 唐湛棋, 等. 用平均速度剖面法测量湍流边界层壁面摩擦速度的对比研究[J]. 实验力学, 2019, 34(2): 209-216. doi: 10.7520/1001-4888-17-190

    WANG K J, BAI J X, TANG Z Q, et al. Comparative study of turbulent boundary layer wall friction velocity measured by average velocity profile method[J]. Journal of Experimental Mechanics, 2019, 34(2): 209-216. doi: 10.7520/1001-4888-17-190
    [26] ADRIAN R J, MEINHART C D, TOMKINS C D. Vortex organization in the outer region of the turbulent boundary layer[J]. Journal of Fluid Mechanics, 2000, 422: 1-54. doi: 10.1017/s0022112000001580
    [27] HUTCHINS N, MARUSIC I. Large-scale influences in near-wall turbulence[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1852): 647-664. doi: 10.1098/rsta.2006.1942
    [28] ROBINSON S K. Coherent motions in the turbulent boundary layer[J]. Annual Review of Fluid Mechanics, 1991, 23(1): 601-639. doi: 10.1146/annurev.fl.23.010191.003125
    [29] FUKAGATA K, IWAMOTO K, KASAGI N. Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows[J]. Physics of Fluids, 2002, 14(11): L73-L76. doi: 10.1063/1.1516779
    [30] ZHOU J, ADRIAN R J, BALACHANDAR S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics, 1999, 387: 353-396. doi: 10.1017/s002211209900467x
    [31] PERRY A E, MARUŠIĆ I. A wall-wake model for the turbu-lence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis[J]. Journal of Fluid Mechanics, 1995, 298: 361-388. doi: 10.1017/s0022112095003351
    [32] MARUSIC I, KUNKEL G J. Streamwise turbulence intensity formulation for flat-plate boundary layers[J]. Physics of Fluids, 2003, 15(8): 2461-2464. doi: 10.1063/1.1589014
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  283
  • HTML全文浏览量:  148
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-03
  • 修回日期:  2020-04-22
  • 刊出日期:  2021-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日