留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

振动环境下喷雾冷却的临界热流密度模型

王泽 邢玉明 刘鑫 赵亮 季益斌

王泽, 邢玉明, 刘鑫, 赵亮, 季益斌. 振动环境下喷雾冷却的临界热流密度模型[J]. 航空动力学报, 2018, 33(3): 597-603. doi: 10.13224/j.cnki.jasp.2018.03.011
引用本文: 王泽, 邢玉明, 刘鑫, 赵亮, 季益斌. 振动环境下喷雾冷却的临界热流密度模型[J]. 航空动力学报, 2018, 33(3): 597-603. doi: 10.13224/j.cnki.jasp.2018.03.011
Model of critical heat flux for spray cooling under vibration environment[J]. Journal of Aerospace Power, 2018, 33(3): 597-603. doi: 10.13224/j.cnki.jasp.2018.03.011
Citation: Model of critical heat flux for spray cooling under vibration environment[J]. Journal of Aerospace Power, 2018, 33(3): 597-603. doi: 10.13224/j.cnki.jasp.2018.03.011

振动环境下喷雾冷却的临界热流密度模型

doi: 10.13224/j.cnki.jasp.2018.03.011
基金项目: 航空科学基金(20132851034)

Model of critical heat flux for spray cooling under vibration environment

  • 摘要: 针对振动环境对喷雾冷却临界热流密度(CHF)的影响问题,基于静止环境喷雾冷却CHF模型,定义并引入内切偏离因子,建立振动环境下喷雾冷却CHF点基模型,对比3种不同工作模式的影响。结果表明:工作模式1周期平均CHF相对其他两种模式分别提高0.98%和1.17%。该模式下,周期内CHF的变化呈现双峰结构,且后半周期最低热流密度高于前半周期最低热流密度,周期内最小CHF较最大CHF下降3.02%。振动幅度越大,CHF下降越大,1.0mm振幅相对0.2mm振幅条件下的周期平均CHF下降1.74%。分析喷雾锥角的影响,55.8°、90°全位角喷雾锥角相对30°喷雾锥角,平均CHF分别下降4.83%及16.21%。大锥角下,后半周期的峰谷值相较周期内最大CHF下降减小。喷雾锥角小的喷嘴能够减小表面振动对喷雾冷却临界热流密度的恶化。

     

  • [1] PAIS M R,CHOW L C.Surface roughness and its effects on the heat transfer mechanism in spray cooling[J].Journal of Heat Transfer,1992,114(1):211-219.
    [2] 周年勇,王瑜,蒋彦龙,等.无沸腾区机载喷雾冷却实验关联式研究[J].航空动力学报,2016,31(5):1113-1120.ZHOU Nianyong,WANG Yu,JIANG Yanlong,et al.Investigation on experimental correlations for aircraft spray cooling system in non-boiling area[J].Journal of Aerospace Power,2016,31(5):1113-1120.(in Chinese)
    [3] CADER T,WESTRA L J,EDEN R C.Spray cooling thermal management for increased device reliability[J].IEEE Transactions on Device and Materials Reliability,2004,4(4):605-613.
    [4] KIM J.Spray cooling heat transfer:the state of the art[J].International Journal of Heat and Fluid Flow,2007,28(4):753-767.
    [5] SILK E A,GOLLIHER E L,SELVAM R P.Spray cooling heat transfer:technology overview and assessment of future challenges for micro-gravity application[J].Energy Conversion and Management,2008,49(2):453-468.
    [6] SHEDD T A,PAUTSCH A G.Spray impingement cooling with single and multiple nozzle arrays:Part Ⅱ visualization and empirical models[J].International Journal of Heat and Mass Transfer,2005,48(15):3176-3184.
    [7] CABRERA E,GONZALEZ J E.Heat flux correlation for spray cooling in the nucleate boiling regime[J].Experimental Heat Transfer,2003,16(1):19-44.
    [8] ORTIZ L,GONZALEZ J E.Experiments on steady-state high heat fluxes using spray cooling[J].Experimental Heat Transfer,1999,12(3):215-233.
    [9] ESTES K A,MUDAWAR I.Correlation of Sauter mean diameter and critical heat flux for spray cooling of small surfaces[J].International Journal of Heat and Mass Transfer,1995,38(16):2985-2996.
    [10] MUDAWAR I,ESTES K A.Optimizing and predicting CHF in spray cooling of a square surface[J].International Journal of Heat Transfer,1996,118(3):672-679.
    [11] VISARIA M,MUDAWAR I.Theoretical and experimental study of the effects of spray inclination on two-phase spray cooling and critical heat flux[J].International Journal of Heat and Mass Transfer,2008,51(9/10):2398-2410.
    [12] VISARIA M,MUDAWAR I.Effects of high subcooling on two-phase spray cooling and critical heat flux[J].International Journal of Heat and Mass Transfer,2008,51(21):5269-5278.
    [13] VISARIA M,MUDAWAR I.A systematic approach to predicting critical heat flux for inclined sprays[J].Journal of Electronic Packaging,2007,129(4):452-459.
    [14] VISARIA M,MUDAWAR I.Application of two-phase spray cooling for thermal management of electronic devices[J].IEEE Transactions on Components and Packaging Technologies,2008,32(4):275-283.
    [15] 郭永献.喷雾液膜流动理论及电子器件喷雾冷却实验研究[D].西安:西安电子科技大学,2009.GUO Yongxian.Spray liquid-film flow theory and experimental study of spray cooling of electronic devices[D].Xian:Xidian University,2009.(in Chinese)
    [16] GUO Yongxian,JIA Jianyuan,CHANG Jiantao,et al.Nozzle track and CHF prediction of spray cooling for inclined sprays[R].Piscataway,NJ:Annual IEEE Semiconductor Thermal Measurement and Management Symposium,2008.
    [17] WANG Ze,XING Yuming,LIU Xin,et al.Computer modeling of droplets impact on heat transfer during spray cooling under vibration environment[J].Applied Thermal Engineering,2016,107:453-462.
    [18] HSIEH C C,YAO S C.Evaporative heat transfer characteristics of a water spray on micro-structured silicon surfaces[J].International Journal of Heat and Mass Transfer,2006,49(5/6):962-974.
  • 加载中
计量
  • 文章访问数:  703
  • HTML浏览量:  0
  • PDF量:  732
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-08
  • 刊出日期:  2018-03-28

目录

    /

    返回文章
    返回