留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

开裂式阻力方向舵流固耦合机理分析

李永昌 戴玉婷 杨超

李永昌, 戴玉婷, 杨超等 . 开裂式阻力方向舵流固耦合机理分析[J]. 北京航空航天大学学报, 2022, 48(12): 2494-2501. doi: 10.13700/j.bh.1001-5965.2021.0151
引用本文: 李永昌, 戴玉婷, 杨超等 . 开裂式阻力方向舵流固耦合机理分析[J]. 北京航空航天大学学报, 2022, 48(12): 2494-2501. doi: 10.13700/j.bh.1001-5965.2021.0151
LI Yongchang, DAI Yuting, YANG Chaoet al. Fluid and structure coupling analysis of split drag rudder[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2494-2501. doi: 10.13700/j.bh.1001-5965.2021.0151(in Chinese)
Citation: LI Yongchang, DAI Yuting, YANG Chaoet al. Fluid and structure coupling analysis of split drag rudder[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2494-2501. doi: 10.13700/j.bh.1001-5965.2021.0151(in Chinese)

开裂式阻力方向舵流固耦合机理分析

doi: 10.13700/j.bh.1001-5965.2021.0151
基金项目: 

国家自然科学基金 11672018

详细信息
    通讯作者:

    戴玉婷, E-mail: yutingdai@buaa.edu.cn

  • 中图分类号: V221+.3; TB553

Fluid and structure coupling analysis of split drag rudder

Funds: 

National Natural Science Foundation of China 11672018

More Information
  • 摘要:

    为了探究阻力方向舵开裂状态下的流场形态和流固耦合运动机理,采用计算流体力学(CFD)方法开展了不同开裂角下的二维阻力方向舵的流场计算。基于动力学模态分解(DMD)方法对各流场进行模态分解,分析了各模态的流动特征及频率变化。结果表明,在20°开裂角的范围内,机翼绕流的流场结构以开裂区内的驻涡及后缘脱落涡为主,流场各阶模态频率随来流速度的增大而增大,随开裂角的增大而减小。同时,对不同开裂角的二维翼型开展了流固耦合计算。结果表明, 随着折减速度的增加,系统的流固耦合运动形式由涡致振动发展为流动失稳,系统的失稳边界随着开裂角的增大而提高。

     

  • 图 1  阻力舵模型

    Figure 1.  Drag rudder model

    图 2  流场网格

    Figure 2.  Flow field grid

    图 3  不同迎角时升力系数的计算结果与试验值

    Figure 3.  Numerical and experimental aerodynamic coefficients with different angles of attack

    图 4  三套网格的俯仰力矩随时间变化曲线

    Figure 4.  Pitching moment of three grids versus time

    图 5  流场压强云图

    Figure 5.  Pressure contours of flow field

    图 6  开裂角5°前4阶DMD模态压强云图

    Figure 6.  Pressure contours of the first four DMD modes at crack angle of 5°

    图 7  流场演化过程

    Figure 7.  Flow field evolution

    图 8  不同来流速度下的DMD模态频率

    Figure 8.  Frequencies of DMD modes versus velocity

    图 9  不同开裂角下的DMD模态频率

    Figure 9.  Frequencies of DMD modes versus crack angles

    图 10  不同固有频率下的响应曲线(5°开裂角)

    Figure 10.  Response curves with different fn values natural frequency(crack angle is 5°)

    图 11  系统失稳频率随折减速度变化(5°开裂角)

    Figure 11.  Instability frequency variations with U* (crack angle is 5°)

    图 12  不同固有频率下的响应曲线(20°开裂角)

    Figure 12.  Response curves with different natural frequency (crack angle is 20°)

    图 13  系统失稳频率随折减速度变化(20°开裂角)

    Figure 13.  Instability frequency variations with U* (crack angle is 20°)

    表  1  前5阶DMD模态增长率与频率

    Table  1.   Frequency and magnification of the first five DMD modes

    序号 模态增长率 模态频率/Hz
    1 0 0
    2 0.004 69.1
    3 -0.031 135.5
    4 -0.593 212.6
    5 -0.742 278.2
    下载: 导出CSV
  • [1] STENFELT G, RINGERTZ U. Lateral stability and control of a tailless aircraft configuration[J]. Journal of Aircraft, 2009, 46(6): 2161-2164. doi: 10.2514/1.41092
    [2] BRITT R T, JACOBSON S B, ARTHURS T D. Aeroservoelastic analysis of the B-2 bomber[J]. Journal of Aircraft, 2000, 37(5): 745-752. doi: 10.2514/2.2674
    [3] NATARAJAN A, KAPANIA R K, INMAN D J. Aeroelastic optimization of adaptive bumps for yaw control[J]. Journal of Aircraft, 2004, 41(1): 175-185. doi: 10.2514/1.477
    [4] 马超, 李林, 王立新. 大展弦比飞翼布局飞机新型操纵面设计[J]. 北京航空航天大学学报, 2007, 33(2): 149-153. https://bhxb.buaa.edu.cn/bhzk/article/id/9622

    MA C, LI L, WANG L X. Design of innovative control surfaces of flying wing aircrafts with large ratio aspect[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(2): 149-153(in Chinese). https://bhxb.buaa.edu.cn/bhzk/article/id/9622
    [5] SIMON J, BLAKE W, MULTHOPP D. Control concepts for a vertical tailless fighter[C]//Aircraft Design, Systems, and Operations Meeting. Reston: AIAA, 1993: 4000.
    [6] MOHAMAD F, WISNOE W, NASIR R E M, et al. A study about the split drag flaps deflections to directional motion of UiTM's blended wing body aircraft based on computational fluid dynamics simulation[J]. AIP Conference Proceedings, 2012, 1440(1): 324-329. doi: 10.1063/1.4704233
    [7] 张子军, 黎军, 李天, 等. 开裂式方向舵对某无尾飞翼布局飞机气动特性影响的实验研究[J]. 实验流体力学, 2010, 24(3): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201003013.htm

    ZHANG Z J, LI J, LI T, et al. Experimental investigation of split-rudder deflection on aerodynamic performance of tailless flying-wing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 63-66(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201003013.htm
    [8] 刘其琛, 李道春, 刘凯, 等. 开裂式阻力方向舵非定常气动特性研究[C]//第九届全国流体力学学术会议, 2014: 337.

    LIU Q C, LI D C, LIU K, et al. Research on unsteady aerodynamic characteristics of the cracked drag rudder[C]//Ninth National Academic Conference on Fluid Dynamics, 2014: 337(in Chinese).
    [9] 韩鹏, 吴志刚, 杨超. 开裂角对阻力方向舵颤振特性的影响[J]. 航空科学技术, 2014, 25(10): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201410009.htm

    HAN P, WU Z G, YANG C. Effect of different split angles on flutter velocity of split drag rudder[J]. Aeronautical Science & Technology, 2014, 25(10): 26-32(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201410009.htm
    [10] LUMLEY J L. The structure of inhomogeneous turbulence[C]//Atmospheric Turbulence and Wave Propagation, 1967: 166-178.
    [11] SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2008, 656: 5-28.
    [12] SCHMID P J, LI L, JUNIPER M P, et al. Applications of the dynamic mode decomposition[J]. Theoretical and Computational Fluid Dynamics, 2011, 25(1-4): 249-259. doi: 10.1007/s00162-010-0203-9
    [13] DEBESSE P, PASTUR L, LUSSEYRAN F, et al. A comparison of data reduction techniques for the aeroacoustic analysis of flow over a blunt flat plate[J]. Theoretical and Computational Fluid Dynamics, 2016, 30(3): 253-274. doi: 10.1007/s00162-015-0375-4
    [14] GHOMMEM M, PRESHO M, CALO V M, et al. Mode decomposition methods for flows in high-contrast porous media. Global-local approach[J]. Journal of Computational Physics, 2013, 253: 226-238. doi: 10.1016/j.jcp.2013.06.033
    [15] 潘翀, 陈皇, 王晋军. 复杂流场的动力学模态分解[C]//第八届全国实验流体力学学术会议, 2010: 77-82.

    PAN C, CHEN H, WANG J J. Dynamic mode decomposition of cpmplex flow field[C]//Eighth Annual Meeting of Experiment Fluid Dynamics, 2010: 77-82(in Chinese).
    [16] 寇家庆, 张伟伟. 动力学模态分解及其在流体力学中的应用[J]. 空气动力学学报, 2018, 36(2): 163-179. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802001.htm

    KOU J Q, ZHANG W W. Dynamic mode decomposition and its applications in fluid dynamics[J]. Acta Aerodynamica Sinica, 2018, 36(2): 163-179(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802001.htm
    [17] ROWLEY C W, MEZI I, BAGHERI S, et al. Spectral analysis of nonlinear flows[J]. Journal of Fluid Mechanics, 2009, 641: 115-127. doi: 10.1017/S0022112009992059
    [18] 韩亚东, 谭磊. 文丘里管空化流动的试验研究及动力学模态分解[J]. 机械工程学报, 2019, 55(18): 173-179. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201918022.htm

    HAN Y D, TAN L. Experiment and dynamic mode decomposition of cavitating flow in venturi[J]. Journal of Mechanical Engineering, 2019, 55(18): 173-179(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201918022.htm
    [19] MENON K, MITTAL R. Dynamic mode decomposition based analysis of flow over a sinusoidally pitching airfoil[J]. Journal of Fluids and Structures, 2020, 94: 102886. https://www.sciencedirect.com/science/article/pii/S2095034915300118
    [20] GENG F, KALKMAN I, SUIKER A S J, et al. Sensitivity analysis of airfoil aerodynamics during pitching motion at a Reynolds number of 1.35×105[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 183: 315-332. https://www.sciencedirect.com/science/article/pii/S0167610518301806
    [21] LEE T, GERONTAKOS P. Investigation of flow over an oscillating airfoil[J]. Journal of Fluid Mechanics, 2004, 512: 313-341. https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/investigation-of-flow-over-an-oscillating-airfoil/2B4B4BBD890CB2DA0085DC8ABC75674A
    [22] 李新涛, 张伟伟, 蒋跃文, 等. 弹性支撑圆柱绕流稳定性分析[J]. 力学学报, 2015, 47(5): 874-880. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201505019.htm

    LI X T, ZHANG W W, JIANG Y W, et al. Stability analysis of flow past an elastically-suspended circular cylinder[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 874-880(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201505019.htm
    [23] POIREL D, HARRIS Y, BENAISSA A. Self-sustained aeroelastic oscillations of a NACA0012 airfoil at low-to-moderate Reynolds numbers[J]. Journal of Fluids and Structures, 2008, 24(5): 700-719. https://www.sciencedirect.com/science/article/pii/S0889974607001089
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  128
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 录用日期:  2021-04-20
  • 网络出版日期:  2021-06-01
  • 整期出版日期:  2022-12-20

目录

    /

    返回文章
    返回
    常见问答