留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞机燃油箱机载惰化技术研究现状与发展趋势

冯诗愚 刘冠男 江荣杰

冯诗愚, 刘冠男, 江荣杰. 飞机燃油箱机载惰化技术研究现状与发展趋势[J]. 航空动力学报, 2021, 36(3): 616-625. doi: 10.13224/j.cnki.jasp.2021.03.017
引用本文: 冯诗愚, 刘冠男, 江荣杰. 飞机燃油箱机载惰化技术研究现状与发展趋势[J]. 航空动力学报, 2021, 36(3): 616-625. doi: 10.13224/j.cnki.jasp.2021.03.017
FENG Shiyu, LIU Guannan, JIANG Rongjie. Research status and development trend of aircraft fuel tank on-board inerting technology[J]. Journal of Aerospace Power, 2021, 36(3): 616-625. doi: 10.13224/j.cnki.jasp.2021.03.017
Citation: FENG Shiyu, LIU Guannan, JIANG Rongjie. Research status and development trend of aircraft fuel tank on-board inerting technology[J]. Journal of Aerospace Power, 2021, 36(3): 616-625. doi: 10.13224/j.cnki.jasp.2021.03.017

飞机燃油箱机载惰化技术研究现状与发展趋势

doi: 10.13224/j.cnki.jasp.2021.03.017
基金项目: 国家自然科学基金委员会-中国民用航空局民航联合研究基金(U1933121); 中央高校基本科研业务费专项资金;江苏省科研与实践创新计划(KYCX19_0198); 江苏高校优势学科建设工程

Research status and development trend of aircraft fuel tank on-board inerting technology

  • 摘要: 为了有效减少飞机燃油箱燃爆风险,以机载惰化技术为重点,介绍了燃油可燃性和氧体积分数指标确定的方法,根据燃爆极限可将民机的安全氧体积分数定为12%,军机则采用直接用燃烧弹打击油箱测定最大压力的方式将其定为9%,分析了气体在燃油中平衡和非平衡溶解的差异,并给出了相应的计算方法,对中空纤维膜惰化技术中分离膜特性、惰化气体分配方式及仿真方法进行了介绍,分析了机载惰化技术未来的发展趋势。结果表明:目前国内机载惰化技术已经成为主流的惰化技术,但针对国产燃油可燃性的研究十分匮乏,未来可以对此展开进一步研究,并且可对冷却惰化、绿色惰化和吸附惰化等技术加大研究力度,有望拥有自主的知识产权。

     

  • [1] ABRAMOWITZ A, BORIS P.Characterization of an oxygen/nitrogen permeable membrane system[R].Atlantic City,US:FAA Technical Center,1996.
    [2] JOHNSON R L,GILLERMAN J B.Aircraft fuel tank inerting system[R].AFWAL-TR-82-2115,1983.
    [3] HALL J E,HAMMERSCHMIDT J A,GOGLIA J J.et al.Aircraft accident report:in-flight breakup over the Atlantic ocean,trans world airlines flight 800[R].NTSB/AAR-00/03,2000.
    [4] CHERRY R,WARREN K.A benefit analysis for nitrogen inerting of aircraft fuel tanks against ground fire explosion[R].DOT/FAA/AR-99/73,1999.
    [5] 王震.飞机燃油箱防爆及抑爆材料应用技术[J].航空科学技术,2002(3):33-35. WANG Zhen.Explosion suppression foraircraftfuel tanks and application technology of suppression material[J].Aeronautical Science And Technology,2002(3):33-35.(in Chinese)
    [6] 田宏,吴穹,江平,等.网状聚氨酯泡沫材料的发展[J].航空材料学报,2001,21(2):59-63. TIAN Hong,WU Qiong,JIANG Ping,et al.The development of reticulated polyurethane foam[J].Journal of Aeronautical Materials,2001,21(2):59-63.(in Chinese)
    [7] 刘小芳,刘卫华.飞机供氧和燃油箱惰化技术概况[J].北华航天工业学院学报,2008,18(3):4-7. LIU Xiaofang,LIU Weihua.Outline of airborne oxygen supplied and its fuel tanks inerted[J].Journal of North China Institute of Aerospace Engineering,2008,18(3):4-7.(in Chinese)
    [8] KLUEG E P,MCADOO W C,NEESE W F.Performance of a DC-9 aircraft liquid nitrogen fuel tank inerting system[R].FAA-NA-72-38,1972.
    [9] REYNOLDS T L,EKLUND T I,HAACK G A.Onboard inert gas generation system/onboard oxygen gas generation system (OBIGGS/OBOGS) study:Part Ⅱ gas separation technology-state of the art[R].Seattle,US:Boeing Phantom Works,2001.
    [10] BURCH I A,KENNETT S R,FLETCHER L E.A risk assessment approach for selecting a replacement for Halon 1301 fire suppressant[R].Victoria,Australia:Aeronautical and Maritime Research Laboratory,2001.
    [11] WAINRIGHT R B,PERLMUTTER A.Generation of inerting gases for aircraft fuel tanks by catalytic combustion techniques[R].AFAPL-TR-69-68,1969.
    [12] ANDERSON C L,GRENICH A F,TOLLE F F,et al.Performance tests of two inert gas generator concepts for airplane fuel tank inerting[C]//Proceedings of 19th Joint Propulsion Conference.Seattle,US:AIAA,1983:1-10.
    [13] MANATT S A,BUSS L B,FUNK A F.Design criteria for application of membrane nitrogen inerting systems to army aircraft fuel tanks[R].USARTL-TR-77-50,1977.
    [14] REYNOLDS T L,EKLUND T I,GREGORY A.Onboard inert gas generation system/onboard oxygen gas generation system (OBIGGS/OBOGS) study:Part Ⅰ aircraft system requirements[R].Seattle,US:Boeing Phantom Works,2001.
    [15] SMITH D E.Fuel tank inerting systems for civil aircraft[D].Fort Collins,US:Colorado State University,2014.
    [16] BARTKNECHT W.Explosionsschutz:grundlagen und anwendung[M].Berlin:Springer Verlag,1993.
    [17] DI PIAZZA J T,GERSTEIN M,WEAST R C.Flammability limits of hydrocarbon-air mixtures[J].Industrial and Engineering Chemistry,1951,43(12),2721-2725.
    [18] ZABETAKIS M G.Flammability characteristics of combustible gases and vapors[M].Washington,DC:Government Printing Office,1966.
    [19] LEES F P.Loss prevention in the process industries.[J].Journal of Bacteriology,1980,110(3):1208-1210.
    [20] PERRY R H,GREEN DW,MALONEY J O.Perry’s chemical engineers’ handbook[M].Washington,DC:McGraw-Hill,1997.
    [21] ZINN S V.Inerted fuel tank oxygen concentration requirments[R].Atlantic City,US:National Aviation Facilities Experimental Center,1971.
    [22] COUNCIL C.Handbook ofaviation fuel properties[M].New York:Naval Air Systems Command,1983.
    [23] SHEPHERD J E,NUYT C D,LEE J J.Flash point and chemical composition of aviation kerosene (Jet A)[R].Washington,DC:National Transportation Safety Board,1999.
    [24] SOCHET I,PASCAUD J M,GILLARD P.Experimental and numerical investigation of kerosene flammability[J].Journal De Physique Ⅳ,2002,12(7):429-435.
    [25] SOCHET I,GILLARD P.Flammability of kerosene in civil and military aviation[J].Journal of Loss Prevention in the Process Industries,2002,15(5):335-345.
    [26] ANDERSON C L.Test and evaluation of Halon 1301 and nitrogen inerting against 23 mm HEI projectiles[R].AFFDL-78-66,978.
    [27] 冯诗愚,刘卫华,黄龙,等.飞机燃油箱气相空间平衡氧体积浓度理论研究[J].南京航空航天大学学报,2011,43(4):556-560. FENG Shiyu,LIU Weihua,HUANG Long,et al.Theoretical study of equilibrium oxygen concentration on ullage in aircraft fuel tank[J].Journal of Nanjing University of Aeronautics and Astronautics,2011,43(4):556-560.(in Chinese)
    [28] Committee ASTM.Standard test method for estimation of solubility of gases in petroleum liquids:D2779-92[S].West Conshohocken,US:ASTM International,2007:1-5.
    [29] MCCONNELL P M,DALAN G A,ANDERSON C L.Vulnerability methodology and protective measures for aircraft fire and explosion hazards[R].AFWAL-TR-85-2060,1985.
    [30] VANNIC W L,GRENICH A F.Fighter aircraft OBIGGS study[R].AFWAL-TR-87-2024,1987.
    [31] BURNS M L,CAVAGE W M.Ground and flight testing of a Boeing 737 center wing fuel tank inerted with nitrogen-enriched air[R].DOT/FAA/AR-01/63,2001.
    [32] SUMMER S M.Fuel tank flammability assessment method user’s manual[R].DOT/FAA/AR-05/8,2008.
    [33] HARRIS A P,RATCLIFFE N M.Dimensional modelling of the fuel outgassing phenomenon:Improving flammability assessment of aircraft fuel tanks[J].The Aeronautical Journal,2011,115(10):605-614.
    [34] 薛勇,冯诗愚,王澍,等.一种描述燃油与气体组分传质的频率传质模型[J].航空动力学报,2013,28(12):2709-2716. XUE Yong,FENG Shiyu,WANG Shu,et al.Frequency mass transfer model describeing mass transfer between fuel and air[J].Journal of Aerospace Power,2013,28(12):2709-2716.(in Chinese)
    [35] 刘猛,王浚.一种富氧中空纤维膜组件的温度特性[J].北京航空航天大学学报,2004,30(3):280-282. LIU Meng,WANG Jun.Temperature characteristic of a kind of hollow-fibber membrane module used for oxygen enrichment[J].Journal of Beijing University of Aeronautics And Astronautics,2004,30(3):280-282.(in Chinese)
    [36] 贺高红,邹越,徐仁贤,等.中空纤维气体分离膜丝内压降规律的研究[J].膜科学与技术,1994,13(2):22-28. HE Gaohong,ZOU Yue,XU Renxian,et al.A study on pressure drop in hollow-fiber membrane for gas separation[J].Membrane Science and Technology,1994,13(2):22-28.(in Chinese)
    [37] 冯诗愚,卢吉,刘卫华,等.机载制氮系统中空纤维膜分离特性[J].航空动力学报,2012,27(6):1332-1339. FENG Shiyu,LU Ji,LIU Weihua,et al.Separation performance of hollow fiber membrane for on-board inerting gas generating system[J].Journal of Aerospace Power,2012,27(6):1332-1339.(in Chinese)
    [38] 蔡琰,林贵平,曾宇,等.中空纤维膜机载制氮装置的数学建模分析[J].航空动力学报,2015,30(9):2100-2107. CAI Yan,LIN Guiping,ZENG Yu,et al.Mathematical modeling analysis of hollow fiber membrane onboard inert gas generation system[J].Journal of Aerospace Power,2015,30(9):2100-2107.(in Chinese)
    [39] 刘小芳,刘卫华,钱国诚,等.机载中空纤维膜富氮性能实验[J].航空动力学报,2012,27(5):975-980. LIU Xiaofang,LIU Weihua,QIAN Guocheng,et al.Experimentation on nitrogen-enriched characteristics of on-board hollow fibre membrane[J].Journal of Aerospace Power,2012,27(5):975-980.(in Chinese)
    [40] 薛勇,刘卫华,高秀峰,等.机载惰化系统中空纤维膜分离性能的实验研究[J].西安交通大学学报,2011,45(3):107-111. XUE Yong,LIU Weihua,GAO Xiufeng,et al.Experimental study on separation performance of hollow fiber membrane for onboard inert gas generating system[J].Journal of Xi’an Jiaotong University,2011,45(3):107-111.(in Chinese)
    [41] BURNS M,CAVAGE W M,HILL R,et al.Flight-testing of the FAA onboard inert gas generation system on an airbus A320[R].DOT/FAA/AR-03/58,2004.
    [42] 薛勇.机载中空纤维膜分离性能及民机燃油箱冲洗惰化研究[D].南京:南京航空航天大学,2010. XUE Yong.Study on separation performance of onboard hollow fiber membrane and flushinerting for fuel tank of civil aircraft[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2010.(in Chinese)
    [43] 邵垒,刘卫华,冯诗愚,等.机载空分装置富氮气体流量及影响因素[J].北京航空航天大学学报,2015,41(1):141-146. SHAO Lei,LIU Weihua,FENG Shiyu,et al.Flow rate of nitrogen-rich air and influence factors for onboard air separation unit[J].Journal of Beijing University of Aeronautics and Astronautics,2015,41(1):141-146.(in Chinese)
    [44] 汪明明,冯诗愚,蒋军昌,等.飞机燃油箱冲洗与洗涤惰化技术比较分析[J].南京航空航天大学学报,2010,42(5):614-619. WANG Mingming,FENG Shiyu,JIANG Junchang,et al.Comparative analysis of fuel washing and scrubbing in aircraft fuel tank[J].Journal of Nanjing University of Aeronautics and Astronautics,2010,42(5):614-619.(in Chinese)
    [45] BURNS M,CAVAGE W M.Inerting of a vented aircraft fuel tank test article with nitrogen-enriched air[R].DOT/FAA/AR-01/6,2001.
    [46] CAVAGE W,BOWMAN T.Modeling in-flight inert gas distribution in a 747 center wing fuel tank[J].Immunology Letters,2005,1(2):61-65.
    [47] 汪明明.飞机油箱气相空间氧体积浓度控制技术的理论研究[D].南京:南京航空航天大学,2010. WANG Mingming.Theoretical study of control technology of oxygen concentration on aircraft fuel tank ullage[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2010.(in Chinese)
    [48] 冯晨曦,刘卫华,鹿世化,等.气体分配方式对多隔仓燃油箱地面惰化的影响[J].航空动力学报,2011,26(11):2528-2533. FENG Chenxi,LIU Weihua,LU Shihua,et al.Study on ground-based inerting process influenced by different gas distribution for multi-bay fuel tank[J].Journal of Aerospace Power,2011,26(11):2528-2533.(in Chinese)
    [49] 鹿世化.油箱惰化空间浓度场模拟和气流优化的理论与实验研究[D].南京:南京航空航天大学,2012. LU Shihua.Numerical simulation of oxygen distribution in aircraft fuel tank ullage and theoretical and experimental study of airflow optimization[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2012.(in Chinese)
    [50] 王学德,王志伟,刘卫华,等.某中央翼燃油箱惰化流场的数值模拟及特性分析[J].航空动力学报,2012,27(12):2641-2647. WANG Xuede,WANG Zhiwei,LIU Weihua,et al.Numerical simulation and analysis of nitrogen-enriched air flow in a center wing tank[J].Journal of Aerospace Power,2012,27(12):2641-2647.(in Chinese)
    [51] 王志伟,王学德,刘卫华,等.某中央翼燃油箱全程惰化流场的数值模拟研究[J].安全与环境学报,2013(1):180-184. WANG Zhiwei,WANG Xuede,LIU Weihua,et al.Numerical simulation of inert gas distribution in the whole flying process in the central wing tank[J].Journal of Safety and Environment,2013(1):180-184.(in Chinese)
    [52] 金筑丰,福田叙彦,谷原望,等.气体分离膜组件及气体分离方法:CN201110345156.X[P].2012-07-04.
    [53] MORRIS R W,MILLER J,LIMAYE S Y.Fuel deoxygenation and aircraft thermal management[R].AIAA 2006-4027,2006.
    [54] 冯诗愚,邵垒,李超越,等.航空燃油类型对催化惰化系统性能的影响[J].航空学报,2016,37(6):1819-1826.
  • 加载中
计量
  • 文章访问数:  161
  • HTML浏览量:  2
  • PDF量:  327
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-02
  • 刊出日期:  2021-03-28

目录

    /

    返回文章
    返回