留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料风扇叶片高周疲劳薄弱点位置预测

唐旭 张煜坤 陈勇

唐旭, 张煜坤, 陈勇. 复合材料风扇叶片高周疲劳薄弱点位置预测[J]. 航空动力学报, 2021, 36(3): 498-508. doi: 10.13224/j.cnki.jasp.2021.03.006
引用本文: 唐旭, 张煜坤, 陈勇. 复合材料风扇叶片高周疲劳薄弱点位置预测[J]. 航空动力学报, 2021, 36(3): 498-508. doi: 10.13224/j.cnki.jasp.2021.03.006
TANG Xu, ZHANG Yukun, CHEN Yong. Prediction of composite fan blade high cycle fatigue weak-link point location[J]. Journal of Aerospace Power, 2021, 36(3): 498-508. doi: 10.13224/j.cnki.jasp.2021.03.006
Citation: TANG Xu, ZHANG Yukun, CHEN Yong. Prediction of composite fan blade high cycle fatigue weak-link point location[J]. Journal of Aerospace Power, 2021, 36(3): 498-508. doi: 10.13224/j.cnki.jasp.2021.03.006

复合材料风扇叶片高周疲劳薄弱点位置预测

doi: 10.13224/j.cnki.jasp.2021.03.006

Prediction of composite fan blade high cycle fatigue weak-link point location

  • 摘要: 提出了一种复合材料风扇叶片高周疲劳薄弱点位置预测方法。利用铺层信息文件,在ACP(ANSYS Composite Pre-Post)中通过壳单元法向拉伸建立全尺寸风扇叶片有限元模型,基于ANSYS-Workbench和Tecplot底层函数接口,开发的后处理程序完成铺层叶片有限元数据提取和数据库建立。根据复合材料CLD(constant life diagram)模型,采用薄弱点指标来预测叶片高周疲劳失效的位置。算例结果表明:叶片失效位置高度均不超过整个叶高的40%。1阶弯曲模态、1阶扭转模态、2阶扭转模态最先失效应力为层间正应力,2阶、3阶弯曲模态、弦向弯曲模态最先失效应力为层间切应力。叶片弯曲模态层间正应力薄弱点位于弦向中部;扭转模态振动应力幅值点全部为结构层,S3薄弱点靠近尾缘。压缩平均应力会导致叶片的高周疲劳破坏,具有较小静应力值的区域会成为薄弱点。

     

  • [1] Federal Aviation Administration.Aircraft engines airworthiness standards:FAR-33[S].Washington DC:Federal Aviation Administration,2016:1-115.
    [2] European Union Aviation Safety Agency.Certificationspecifications and acceptable means of compliance forengines:JAR-33[S].Brussels: European Union Aviation Safety Agency,2018:2-29.
    [3] 中国民用航空局.航空发动机适航规定:CCAR-33-R2[S].北京:中国民用航空局,2016:37.
    [4] NISHIKAWA M,HEMMI K,TAKEDA N.Finite-element simulation for modeling composite plates subjected to soft-body,high-velocity impact for application to bird-strike problem of composite fan blades[J].Composite Structures,2011,93(5):1416-1423.
    [5] IRISARRI X F,LASSEIGNE A,LEROY H F,et al.Optimal design of laminated composite structures with ply drops using stacking sequence tables[J].Composite Structures,2014,107:559-569.
    [6] YANG Junbo,SONG Bifeng,ZHONG Xiaoping,et al.Optimal design of blended composite laminate structures using ply drop sequence[J].Composite Structures,2016,135:30-37.
    [7] CHOWDHURY M N,HEALEY R,WANG J,et al.Using a residual strength mode Ⅰ to predict mode Ⅱ delamination failure of composite materials under block fatigue loading[J].International Journal of Fatigue,2020,135:1-8.
    [8] CHEN Jie,LI Qiusheng.Vibration characteristics of a rotat ing pre-twisted composite laminated blade[J].Composite Structures,2019,208:78-90.
    [9] RAFIEE M,NITZSCHE F,LABROSSE M.Dynamics,vibration and control of rotating composite beams and blades:acritical view[J].Thin-Walled Structures,2017,119:795-819.
    [10] KEE J Y,KIM H J.Vibration characteristics of initially twisted rotating shell type composite blades[J].Composite Structures,2004,64(2):151-159.
    [11] SIDDENS A,BAYANDOR J.Multidisciplinary impact damage prognosis methodology for hybrid structural propul-sion systems[J].Computers and Structures,2013,122:178-191.
    [12] 胡殿印,彭苗娇,王荣桥,等.树脂基复合材料风扇叶片的优化设计[J].航空动力学报,2012,27(7):1630-1637. HU Dianyin,PENG Miaojiao,WANG Rongqiao,et al.Optimization design of resin-based composite fan blade[J].Journal of Aerospace Power,2012,27(7):1630-1637.(in Chinese)
    [13] ZHANG Bing,LUIZ F K,MIKE I J,et al.An experimental and numerical investigation into damage mechanisms in tapered laminates under tensile load[J].Composites Part A: Applied Science and Manufacturing,2020,133:1-13.
    [14] 李迪,陈云永,廖连芳.空心风扇叶片高循环疲劳试验设计与验证[J].航空动力学报,2017,32(6):1359-1365. LI Di,CHEN Yunyong,LIAO Lianfang.Experimental design and verification of hollow fan blade high cycle fatigue[J].Journal of Aerospace Power,2017,32(6):1359-1365.(in Chinese)
    [15] 杨雯,杜发荣,郝勇,等.宽弦空心风扇叶片动力响应特性研究[J].航空动力学报,2007,22(3):444-449. YANG Wen,DU Farong,HAO Yong,et al.Investigation of dynamic response property of wide-chord hollow fan blade[J].Journal of Aerospace Power,2007,22(3):444-449.(in Chinese)
    [16] 费庆国,郑成林,何顶顶,黄跃平.一种基于振幅控制的航空发动机叶片振动疲劳试验方法:中国 108195537A[P].2018-06-22.
    [17] 王仲林,陈勇,欧阳华,等.钛合金宽弦风扇叶片的振动特性[J].航空动力学报,2018,33(11):2593-2601. WANG Zhonglin,CHEN Yong,OUYANG Hua,et al.Investigation on vibration characteristics of titanium wide-chord fan blade[J].Journal of Aerospace Power,2018,33(11):2593-2601.(in Chinnese)
    [18] LIU Hongwei,ZHANG Zhichun,JIA Hongbo,et al.A modified composite fatigue damage model considering stiffness evolution for wind turbine blades[J].Composite Structures,2020,233:1-9.
    [19] 王仲林.在适航的复杂工况下宽弦风扇叶片的可操作性与振动特性研究[D].上海:上海交通大学,2019. WANG Zhonglin.Study on the operability and vibration characteristics of wide-chord fan blade under abnormal airworthy operating conditions[D].Shanghai:Shanghai Jiao Tong University,2019.(in Chinese)
    [20] 杨瑞瑶.发动机风扇叶片疲劳寿命计算及振动特性分析[D].成都:电子科技大学,2014. YANG Ruiyao.The fatigue life calculation and vibration characterisctic analysis on fan blade of aircraft engine[D].Chengdu:University of Electronic Science and Technology of China,2014.(in Chinese)
    [21] DAVILA C G,JAUNKY N,GOSWAMI S.Failure criteria for FRP laminates in plane stress[R].AIAA-2003-1991,2003.
    [22] REIS P N B,FERREIRA J A M,COSTA J D M,et al.Fatigue life evaluation for carbon/epoxy laminate composites under constant and variable block loading[J].Composites Science and Technology,2009,69(2):154-160.
    [23] BROER A A R.Fatigue life prediction of carbon fiber reinforced epoxy laminates using a single S -N curve[D].Delft,Netherland:Delft University of Technology,2018.
  • 加载中
计量
  • 文章访问数:  219
  • HTML浏览量:  9
  • PDF量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-07
  • 刊出日期:  2021-03-28

目录

    /

    返回文章
    返回