留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重力对R134a在矩形小通道内冷凝过程的影响

李盼盼 陈振乾

李盼盼, 陈振乾. 重力对R134a在矩形小通道内冷凝过程的影响[J]. 空间科学学报, 2016, 36(4): 525-530. doi: 10.11728/cjss2016.04.525
引用本文: 李盼盼, 陈振乾. 重力对R134a在矩形小通道内冷凝过程的影响[J]. 空间科学学报, 2016, 36(4): 525-530. doi: 10.11728/cjss2016.04.525
LI Panpan, CHEN Zhenqian. Effect of Gravity during Condensation of R134a in a Rectangular Minichannel[J]. Chinese Journal of Space Science, 2016, 36(4): 525-530. doi: 10.11728/cjss2016.04.525
Citation: LI Panpan, CHEN Zhenqian. Effect of Gravity during Condensation of R134a in a Rectangular Minichannel[J]. Chinese Journal of Space Science, 2016, 36(4): 525-530. doi: 10.11728/cjss2016.04.525

重力对R134a在矩形小通道内冷凝过程的影响

doi: 10.11728/cjss2016.04.525
基金项目: 载人航天工程项目(TZYY08001)和中国科学院战略性先导科技专项项目(XDA04077800)共同资助
详细信息
    作者简介:
    • 李盼盼,739638617@qq.com.
    通讯作者:
    • 陈振乾,E-mail:zqchen@seu.edu.cn
  • 中图分类号: V524

Effect of Gravity during Condensation of R134a in a Rectangular Minichannel

  • 摘要: 为研究重力对小通道冷凝过程的影响,采用VOF模型对制冷剂R134a在水平放置的边长1mm方形截面小通道内的冷凝换热过程进行数值模拟.模拟过程考虑重力、表面张力和界面剪切力的综合作用,表面张力采用CSF模型.结果表明:重力对矩形小通道冷凝换热的影响不明显,蒸气在通道横截面上呈近似圆形分布;通道较短时重力对液膜的汇聚作用不明显,达到一定长度后重力作用凸显.研究结果为天舟一号货运飞船搭载的蒸发与冷凝科学实验研究项目冷凝空间实验方案设计提供了理论依据.

     

  • [1] CHEN Yongping, XIAO Chunmei, SHI Mingheng, et al. Review of condensation in microchannels[J]. J. Chem. Industry Eng., 2007, 58(9):2153-2160(陈永平, 肖春梅, 施明恒, 吴嘉峰. 微通道冷凝研究的进展与展望[J]. 化工学报, 2007, 58(9):2153-2160)
    [2] RIVA D E, COL D D. Effect of gravity during condensation of R134a in a circular minichannel[J]. Microgravity Sci. Technol., 2011, 23(supp.):87-97
    [3] RIVA D E, COL D D. Numerical simulation of laminar liquid film condensation in a horizontal circular minichannel[J]. J. Heat Transfer, 2012, 134(5):807-824
    [4] WANG Xun, WANG Wen, ZHUAN Rui. Experimental of condensation and heat transfer for R134a refrigerant in micro-channel heat exchanger[J]. Cryogenics, 2009, 2:10-14(王勋, 王文, 耑锐. R134a制冷剂在微通道中的相变传热特性实验[J]. 低温工程, 2009, 2:10-14)
    [5] SHIN J S, KIM M H. An experimental study of flow condensation heat transfer inside circular and rectangular mini-channels[J]. Heat Trans. Eng., 2004, 26(3):36-44
    [6] WANG H S, ROSE J W. A theoretical model of film condensation in square section horizontal microchannels[J]. Chem. Eng. Res. Design, 2004, 82:430-434
    [7] WANG H S, ROSE J W. A theory of film condensation in horizontal noncircular section microchannels[J]. Heat Transfer, 2005, 127:1096-1105
    [8] WANG H S, ROSE J W. Film condensation in horizontal circular section microchannels[J]. Eng. Syst. Model. Simulat., 2009, 1:115-121
    [9] HIRT W, NICHOLS D. Volume of Fluid (VOF) method for the dynamics of free boundaries[J]. J. Comput. Phys., 1981, 39:201-225
    [10] LEE W H. A pressure iteration scheme for two-phase flow modeling[C]//IEEE/Engineering in Medicine and Biology Society Annual Conference, 1980:407-431
    [11] ANSYS Inc. ANSYS Fluent Theory Guide 15.0[EB/OL][2013-11-01]. http://www.ansys.com
    [12] ROSE J W. Surface tension effects and enhancement of condensation heat transfer[J]. Chem. Eng. Res. Design, 2004, 82(4):419-429
    [13] SEMENOV V, NIKITIN N. Condensation heat transfer on noncircular pipes in stationary vapor[J]. Heat Trans. Res., 2008, 39(4):317-326
  • 加载中
计量
  • 文章访问数:  1434
  • HTML全文浏览量:  162
  • PDF下载量:  736
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-10
  • 修回日期:  2016-05-26
  • 刊出日期:  2016-07-15

目录

    /

    返回文章
    返回