留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于响应面法的短距/垂直起降飞机近地面升力损失

刘帅 王占学 周莉 史经纬

刘帅, 王占学, 周莉, 史经纬. 基于响应面法的短距/垂直起降飞机近地面升力损失[J]. 航空动力学报, 2017, 32(4): 874-881. doi: 10.13224/j.cnki.jasp.2017.04.012
引用本文: 刘帅, 王占学, 周莉, 史经纬. 基于响应面法的短距/垂直起降飞机近地面升力损失[J]. 航空动力学报, 2017, 32(4): 874-881. doi: 10.13224/j.cnki.jasp.2017.04.012
Lift loss of short/vertical takeoff and landing aircraft proximity of ground based on response surface method[J]. Journal of Aerospace Power, 2017, 32(4): 874-881. doi: 10.13224/j.cnki.jasp.2017.04.012
Citation: Lift loss of short/vertical takeoff and landing aircraft proximity of ground based on response surface method[J]. Journal of Aerospace Power, 2017, 32(4): 874-881. doi: 10.13224/j.cnki.jasp.2017.04.012

基于响应面法的短距/垂直起降飞机近地面升力损失

doi: 10.13224/j.cnki.jasp.2017.04.012
基金项目: 国家自然科学基金(51306151,51576163)

Lift loss of short/vertical takeoff and landing aircraft proximity of ground based on response surface method

  • 摘要: 建立了短距/垂直起降(S/VTOL)飞机近地面升力损失的流场计算模型.通过数值模拟得出特定升力布局的飞机近地面状态各工况的升力损失.采用响应面法获得了飞机升力损失关于喷管落压比(NPR)、来流速度及飞机高度的2阶响应曲面函数及显著影响飞机升力损失的关键因素.并分析了喷管落压比、来流速度及飞机高度对飞机升力损失的交互影响作用,优化得出给定工况范围内升力损失最小的工作点.研究表明:仅考虑单因素影响时,升力损失随高度、落压比的增大而减小,随来流速度的增大而增大;考虑两因素交互作用时,高度与落压比及来流速度与落压比对升力损失存在交互影响,而高度与来流速度对升力损失无交互影响;优化获得的升力损失最小的工作点是飞机距地面高度为9D(D为喷管直径)、喷飞机高度为3、来流速度为0m/s,此时的升力损失为1.3%.

     

  • [1] Vanoverbeke T J.A numerical study of the hot gas environment around a STOVL aircraft in ground proximity[R].AIAA 88-2882,1988.
    [2] Johns A L,Flood J D,Strock T W,et al.Hot gas ingestion testing of an advanced STOVL concept in the NASA Lewis 9- by 15-foot low speed wind tunnel with flow visualization [R].AIAA 88-3025,1988.
    [3] Johns A L,Neiner G,Strock T W,et al.Engine inlet distortion in a 9.2 percent scale vectored thrust STOVL model in ground effect[R].AIAA 89-2910,1989.
    [4] Vanoverbeke T J,Holdeman J D.Three-dimensional turbulent flow code calculations of hot gas ingestion[J].Journal of Aircraft,1990,27(7):577-582.
    [5] Fricker D M,Holdeman J D,Vanka S P.Calculations of hot gas ingestion for a STOVL aircraft model[R].AIAA 92-0385,1992.
    [6] Smith M S,Chawla K,Vandalsem W R.Numerical simulation of a complete STOVL aircraft in ground effect[R].AIAA 91-3293,1991.
    [7] Barata J M M.Numerical and experimental study of fountain flows produded by multijet impingement on a ground plane[R].AIAA 91-1806,1991.
    [8] Barata J M M.Fountain flows produced by multijet impingement on a ground plane[J].Journal of Aircraft,1993,30(1):50-56.
    [9] Karman S L,CFD modeling of F-35 using hybrid unstructured meshes[R].AIAA-2009-3662,2009.
    [10] Cabrita P M,Saddington A J,Knowles K.Unsteady features of twin-jet STOVL ground effects[R].AIAA-2002-6014,2002.
    [11] Saddington A J,Knowles K,Cabrita P M.Flow visualization and measurements in a short take-off,vertical landing fountain flow[R].AIAA-2007-1402,2007.
    [12] Saddington A J,Knowles K,Cabrita P M.Flow measurements in a short takeoff,vertical landing fountain:parallel jets[J].Journal of Aircraft,2008,45(5):1736-1743.
    [13] Saddington A J,Knowles K,Cabrita P M.Flow measurements in a short takeoff,vertical landing fountain:splayed jets[J].Journal of Aircraft,2009,46(3):874-882.
    [14] Box G E P,Draper N R,A Basis for the selection of a response surface design[J].Journal of American Statistical Association,1959,54(287):622-654.
    [15] 何为,薛卫东,唐斌.优化试验设计方法及数据分析[M].北京:化学工业出版社,2012.
  • 加载中
计量
  • 文章访问数:  965
  • HTML浏览量:  2
  • PDF量:  431
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-13
  • 刊出日期:  2017-04-28

目录

    /

    返回文章
    返回